-
公开(公告)号:CN113292249B
公开(公告)日:2022-05-03
申请号:CN202110589903.8
申请日:2021-05-28
Abstract: 一种MoS2/ZnO/Ag2S同轴纳米管阵列的制备方法,先制备MoS2纳米管阵列,然后在MoS2纳米管表面包覆ZnO薄膜,最后在MoS2/ZnO纳米管阵列表面吸附Ag2S量子点。具体,先在基片表面用ALD法沉积ZnO籽晶层,再用水热法生长ZnO纳米棒阵列,随后将基片固定放入反应釜中在纳米棒表面包覆MoS2薄膜,用硫酸刻蚀得到MoS2纳米管阵列,再用ALD法在MoS2纳米管表面包覆ZnO薄膜,最后用连续离子层吸附反应法制备Ag2S量子点,得MoS2/ZnO/Ag2S同轴纳米管阵列。所产生的纳米管存在两层异质界面,可通过调控各层厚度去调节整体的能带结构和光电特性,适用于光伏电池和光催化剂等领域。
-
公开(公告)号:CN113292249A
公开(公告)日:2021-08-24
申请号:CN202110589903.8
申请日:2021-05-28
Abstract: 一种MoS2/ZnO/Ag2S同轴纳米管阵列的制备方法,先制备MoS2纳米管阵列,然后在MoS2纳米管表面包覆ZnO薄膜,最后在MoS2/ZnO纳米管阵列表面吸附Ag2S量子点。具体,先在基片表面用ALD法沉积ZnO籽晶层,再用水热法生长ZnO纳米棒阵列,随后将基片固定放入反应釜中在纳米棒表面包覆MoS2薄膜,用硫酸刻蚀得到MoS2纳米管阵列,再用ALD法在MoS2纳米管表面包覆ZnO薄膜,最后用连续离子层吸附反应法制备Ag2S量子点,得MoS2/ZnO/Ag2S同轴纳米管阵列。所产生的纳米管存在两层异质界面,可通过调控各层厚度去调节整体的能带结构和光电特性,适用于光伏电池和光催化剂等领域。
-
公开(公告)号:CN118448984A
公开(公告)日:2024-08-06
申请号:CN202410547524.6
申请日:2024-05-06
Abstract: 一种氮化镓基近紫外激光器外延结构,涉及半导体器件。该激光器结构包括:N型欧姆电极,在N型欧姆电极上制备N型衬底,在N型衬底上依次生长外延缓冲层、N型限制层、N型波导层、有源区、铟镓氮复合P型波导层、电子阻挡层、P型超晶格限制层、P型欧姆接触层,在所述P型欧姆接触层上制作P型欧姆电极;其中,铟镓氮复合P型波导层由多个周期的超晶格结构组成,其中每个周期的量子阱铟组分含量,沿所述有源区指向P型电子阻挡层方向逐渐增大。提供的激光器外延结构,可以改善内部光场分布,降低光学损耗,降低阈值电流,提高输出光功率。
-
公开(公告)号:CN118076215A
公开(公告)日:2024-05-24
申请号:CN202410220448.8
申请日:2024-02-28
IPC: H10N70/00
Abstract: 本发明公开了一种横向忆阻器的极性调控方法,该横向忆阻器由从下至上依次设置的衬底、阻变功能层、两端金属电极构成,所述阻变功能层材料为半导体二维材料。本发明的极性调控方法为控制等离子体对阻变功能层材料的处理程度,通过增强处理程度使器件的性能转变或稳定为单极性,并且降低开启电压和延长循环寿命。本发明可有效提升该类忆阻器的性能,拓宽该类忆阻器的应用场景,促进基于二维材料的忆阻器在大规模神经网络运算电路中的应用。
-
公开(公告)号:CN111063753B
公开(公告)日:2021-08-03
申请号:CN201911058896.8
申请日:2019-10-31
Applicant: 厦门大学
IPC: H01L31/0392 , H01L31/0352 , H01L31/0216 , H01L31/101 , H01L31/18
Abstract: 本发明公开了一种利用Mg掺杂量子阱增强发光效率的AlGaN基深紫外LED外延结构及其制备方法。该深紫外LED结构包括衬底、缓冲层、AlN层、超晶格应力调控/位错过滤层、非掺杂AlGaN层、n型AlGaN层、Mg掺杂的有源发光区多量子阱层、p型AlGaN层以及p型GaN接触层。本发明在LED的多量子阱有源发光层的阱层中间三分之一进行Mg杂质掺杂,以提高LED的内量子效率和光提取效率。相比于非掺杂多量子阱结构,Mg掺杂多量子阱结构可抑制量子限制斯塔克效应,提高电子和空穴波函数的空间交叠以及辐射复合效率,并可提供更多空穴参与辐射复合,提高内量子效率。并且Mg掺杂还可引入局域应变场,加大量子阱中的压应变,提升TE偏振光比例,最终提高AlGaN基深紫外LED光提取效率。
-
公开(公告)号:CN112098481A
公开(公告)日:2020-12-18
申请号:CN202010864102.3
申请日:2018-03-30
Applicant: 厦门大学
Abstract: 本发明涉及氮化物半导体材料p型电导技术领域,特别涉及一种用于氮化物半导体材料除氢激活的装置及氮化物半导体材料除氢激活的方法。本发明采用恒电位电化学装置,通过打断p型杂质与H原子的键连,并将H从样品中移除,激活p型杂质的受主活性,在外加电压和电解液离子的共同作用下,H原子与p型杂质的键连可被有效打断并脱离样品,从而使p型杂质被迅速激活,空穴浓度获得提高,可极大地改善p型材料的导电特性。此方法装置简单、操作简便、常温工作,可制备具有良好导电特性的p型氮化物半导体材料,且可对完整器件结构晶圆片做后期处理,在可见光、紫外、深紫外LED、LD、探测器等光电子领域中有着广泛的应用前景和开发潜力。
-
公开(公告)号:CN111293134A
公开(公告)日:2020-06-16
申请号:CN202010081740.8
申请日:2020-02-06
Applicant: 厦门大学
Abstract: 本发明公开了一种无需巨量转移的三色Micro/Nano LED阵列及其制作方法,在n型GaN基底上通过图形化光刻、感应耦合等离子体刻蚀等技术,形成包含极性面和半极性面的六边形微纳米孔阵结构,再经二次外延同时形成发光波长分别为580~680nm、480~580nm及380~480nm的红绿蓝光多量子阱结构及p型层,利用光刻、刻蚀、镀膜等工艺制作出晶圆级的三色Micro/Nano LED阵列,该阵列的所有单个重复单元内包含三颗同轴嵌套六边形结构的RGB三色波长LED。本发明极大地简化了三色Micro/Nano LED的制备工艺,缩短了器件的制备周期,且可扩展至纳米量级,为降低单个显示像素的尺寸提供有力途径。这种无需巨量转移的方法可制成覆盖Micro至Nano尺寸级别的三色LED阵列和超高分辨率的Micro/Nano LED显示屏。
-
公开(公告)号:CN111063753A
公开(公告)日:2020-04-24
申请号:CN201911058896.8
申请日:2019-10-31
Applicant: 厦门大学
IPC: H01L31/0392 , H01L31/0352 , H01L31/0216 , H01L31/101 , H01L31/18
Abstract: 本发明公开了一种利用Mg掺杂量子阱增强发光效率的AlGaN基深紫外LED外延结构及其制备方法。该深紫外LED结构包括衬底、缓冲层、AlN层、超晶格应力调控/位错过滤层、非掺杂AlGaN层、n型AlGaN层、Mg掺杂的有源发光区多量子阱层、p型AlGaN层以及p型GaN接触层。本发明在LED的多量子阱有源发光层的阱层中间三分之一进行Mg杂质掺杂,以提高LED的内量子效率和光提取效率。相比于非掺杂多量子阱结构,Mg掺杂多量子阱结构可抑制量子限制斯塔克效应,提高电子和空穴波函数的空间交叠以及辐射复合效率,并可提供更多空穴参与辐射复合,提高内量子效率。并且Mg掺杂还可引入局域应变场,加大量子阱中的压应变,提升TE偏振光比例,最终提高AlGaN基深紫外LED光提取效率。
-
公开(公告)号:CN108519411A
公开(公告)日:2018-09-11
申请号:CN201810298037.5
申请日:2018-03-30
Applicant: 厦门大学
Abstract: 一种氮化物半导体材料除氢激活提升p型导电性的方法,涉及III族氮化物半导体材料。设计三电极电化学处理装置;将p型掺杂的半导体晶片密封至容器底部,作为工作电极;设置辅助电极和参比电极,与工作电极构成电化学三电极系统;选择除氢电解液,加入容器中,并淹没三电极;于工作电极和辅助电极之间施加直流偏压,进行除H并激活p型杂质;激活处理完毕,取出p型半导体晶片,进行去离子水超声清洗;利用电学装置测试晶片的电学性质。操作简便、无需高温退火,可制备出具有良好导电特性的p型GaN和AlGaN材料,并且可对完整结构器件晶圆片做后期处理,在可见光、紫外、深紫外的LED、LD、探测器等光电子领域中有着广泛的应用。
-
公开(公告)号:CN103474503B
公开(公告)日:2016-01-20
申请号:CN201310461747.2
申请日:2013-09-30
Applicant: 厦门大学
IPC: H01L31/101 , H01L31/0248
Abstract: 一种基于二维晶格的紫外单波长MSM光电探测器,属于半导体光电子器件技术领域。提供一种利用量子限制效应实现可调控单波长、且更容易发挥量子能级态密度高这一优势的基于二维晶格的紫外单波长MSM光电探测器。包括衬底、具有量子能级的二维晶格和金属叉指电极;所述二维晶格在衬底上交替生长,交替生长的周期为至少20个;每个交替生长周期的二维晶格由第一介质膜层与第二介质膜层形成,第一介质膜层的禁带落在第二介质膜层的禁带中,成为半导体Ⅰ类超晶格,第一介质膜层作为势阱,第二介质膜层作为势垒,金属叉指电极与二维晶格形成肖特基接触。
-
-
-
-
-
-
-
-
-