一种Cu掺杂ZnFe2O4纳米颗粒及其制备方法和应用

    公开(公告)号:CN109115843B

    公开(公告)日:2020-12-25

    申请号:CN201811103289.4

    申请日:2018-09-20

    Applicant: 东北大学

    Abstract: 本发明属于零维金属氧化物半导体材料的气体传感器技术领域,具体涉及一种Cu掺杂ZnFe2O4纳米颗粒及其制备方法和应用。将FeCl3、ZnCl2、CuCl2和CON2H4按摩尔比10:10:8~15:330溶于去离子水中,其中FeCl3与去离子水的比例为1:50mol/L,磁力搅拌,得到混合溶液;经洗涤、干燥、热处理后得Cu掺杂ZnFe2O4纳米颗粒。将Cu掺杂ZnFe2O4纳米颗粒制成低温气体传感器的气敏涂层,该气体传感器在25~50℃时即可获得对H2S气体的较大灵敏度,解决了传统金属氧化物半导体式气体传感器在低温区域气敏特性较差的问题,是具有良好发展前景的气体传感器。

    一种基于rGO-SnO2纳米复合材料的NO2气敏元件及其制备方法

    公开(公告)号:CN110243881A

    公开(公告)日:2019-09-17

    申请号:CN201910640005.3

    申请日:2019-07-16

    Applicant: 东北大学

    Abstract: 本发明公开了一种基于rGO-SnO2纳米复合材料的NO2气敏元件及其制备方法,属于石墨烯-金属氧化物复合材料气敏元件技术领域。所述气敏元件主要由电极元件和均匀涂覆在电极元件上的rGO-SnO2纳米复合材料组成,所述rGO-SnO2纳米复合材料的微观形貌为在还原氧化石墨烯片层上均匀生长着SnO2纳米球,所述SnO2纳米球直径为40~70nm,为四方锡石相结构。本发明采用一步水热法制备出比表面积大、电阻率低、分散性良好的rGO-SnO2纳米复合材料,然后将rGO-SnO2纳米复合材料作为气敏涂层制备出NO2气敏元件。该气敏元件有效地解决了传统NO2气敏元件工作温度较高及石墨烯类气敏元件灵敏度较低、恢复时间较长等问题,具有较好的应用价值和发展前景。

    一种基于闪锌矿制备ZnS-ZnO异质结纳米颗粒的NO2气敏元件

    公开(公告)号:CN109781796B

    公开(公告)日:2020-09-15

    申请号:CN201910169014.9

    申请日:2019-03-06

    Applicant: 东北大学

    Abstract: 一种基于闪锌矿制备ZnS‑ZnO异质结纳米颗粒的NO2气敏元件属于半导体金属氧化物气敏元件技术领域。一种ZnS‑ZnO异质结纳米颗粒的制备方法,将粒度为1~2μm的闪锌矿500~800℃焙烧2~8h得固体粉末;将固体粉末与Na2S·9H2O和NaOH按质量比2:3~12:1混合成悬浊液,NaOH的浓度为0.1~0.2mol/L,30~70℃搅拌10min后静置2~10h得沉淀产物,洗涤、干燥、300~500℃热处理4h。本发明成本低、流程简单、反应易于控制、可批量生产。通过该方法制备的气敏元件在工作温度250℃时对NO2气体灵敏度最大,响应和恢复时间短,可逆性好,具有良好发展前景。

    一种Pt为催化剂制备SnO2纳米材料的方法和应用

    公开(公告)号:CN109911929A

    公开(公告)日:2019-06-21

    申请号:CN201910253135.1

    申请日:2019-03-29

    Applicant: 东北大学

    Abstract: 一种Pt为催化剂制备SnO2纳米材料的方法和应用,属于金属氧化物半导体材料的气体传感器领域。一种Pt为催化剂制备的SnO2纳米材料,所述SnO2纳米材料呈梳状结构,围绕主干表面密集生长有纳米线;所述纳米材料是由金红石四方相晶体结构的SnO2构成;主干直径为100~500nm,长度为100~500μm,纳米线的直径为80~200nm,长度为400nm~2μm。本发明H2S气体传感器在较低工作温度下获得对H2S气体最大的灵敏度,具有快速的响应和恢复速度,检测下限为500ppb,对H2S有优异的选择性。该发明克服了现有H2S气体传感器工作温度过高、响应恢复速度慢、选择性差等不足,有良好的应用前景。

    一种基于闪锌矿制备ZnS-ZnO异质结纳米颗粒的NO2气敏元件

    公开(公告)号:CN109781796A

    公开(公告)日:2019-05-21

    申请号:CN201910169014.9

    申请日:2019-03-06

    Applicant: 东北大学

    Abstract: 一种基于闪锌矿制备ZnS-ZnO异质结纳米颗粒的NO2气敏元件属于半导体金属氧化物气敏元件技术领域。一种ZnS-ZnO异质结纳米颗粒的制备方法,将粒度为1~2μm的闪锌矿500~800℃焙烧2~8h得固体粉末;将固体粉末与Na2S·9H2O和NaOH按质量比2:3~12:1混合成悬浊液,NaOH的浓度为0.1~0.2mol/L,30~70℃搅拌10min后静置2~10h得沉淀产物,洗涤、干燥、300~500℃热处理4h。本发明成本低、流程简单、反应易于控制、可批量生产。通过该方法制备的气敏元件在工作温度250℃时对NO2气体灵敏度最大,响应和恢复时间短,可逆性好,具有良好发展前景。

    一种由纳米棒自组装而成的WO3微米梭的NH3气敏元件及其制备方法

    公开(公告)号:CN110426420B

    公开(公告)日:2020-09-22

    申请号:CN201910728426.1

    申请日:2019-08-08

    Applicant: 东北大学

    Abstract: 本发明公开了一种由纳米棒自组装而成的WO3微米梭的NH3气敏元件及其制备方法,属于半导体氧化物的气敏元件技术领域。所述气敏元件主要由电极元件与均匀涂覆在电极元件上的WO3微米梭组成,所述WO3微米梭由WO3纳米棒自组装而成,所述WO3微米梭的直径为0.4~1.5μm、长度为0.6~1.4μm,所述WO3纳米棒的直径为15~33nm、长度为80~1050nm,所述WO3微米梭为六方相晶体结构。本发明所述的由纳米棒自组装而成的WO3微米梭具有晶相单一、结晶度高、形貌均匀一致、孔隙率高、比表面积大等结构特性。本发明所述气敏元件具有对NH3气体的高选择性、低工作温度的快速响应等特点。

    一种WO3纳米花材料的制备及其在气体传感器中的应用

    公开(公告)号:CN110255621B

    公开(公告)日:2020-05-19

    申请号:CN201910649152.7

    申请日:2019-07-18

    Applicant: 东北大学

    Abstract: 本发明提供一种WO3纳米花材料的制备及其在气体传感器中的应用。采用NaOH浸出工艺提取白钨精矿中的钨,以获得含钨的浸出液;将浸出液加入到HCl溶液中形成钨酸沉淀物,将洗涤后的钨酸加入去离子水以及H2O2溶解;用HCl溶液调混合溶液pH值至1.2~1.8,经100~180℃恒温条件下反应4~16h后,获得由纳米片自组装而成的WO3纳米花,该纳米花的直径为300~420nm、厚度为100~140nm,纳米片的长度为170~390nm、宽度为120~140nm、厚度为30~50nm,具有六方相晶体结构。将此WO3纳米花涂覆于陶瓷管外表面的金电极上,然后经老化处理制备成气体传感器。基于本发明方法制备NO2气体传感器,可以实现对低浓度、甚至ppb级NO2气体的高选择性、低工作温度的快速响应。

    一种由纳米棒自组装而成的WO3微米梭的NH3气敏元件及其制备方法

    公开(公告)号:CN110426420A

    公开(公告)日:2019-11-08

    申请号:CN201910728426.1

    申请日:2019-08-08

    Applicant: 东北大学

    Abstract: 本发明公开了一种由纳米棒自组装而成的WO3微米梭的NH3气敏元件及其制备方法,属于半导体氧化物的气敏元件技术领域。所述气敏元件主要由电极元件与均匀涂覆在电极元件上的WO3微米梭组成,所述WO3微米梭由WO3纳米棒自组装而成,所述WO3微米梭的直径为0.4~1.5μm、长度为0.6~1.4μm,所述WO3纳米棒的直径为15~33nm、长度为80~1050nm,所述WO3微米梭为六方相晶体结构。本发明所述的由纳米棒自组装而成的WO3微米梭具有晶相单一、结晶度高、形貌均匀一致、孔隙率高、比表面积大等结构特性。本发明所述气敏元件具有对NH3气体的高选择性、低工作温度的快速响应等特点。

    一种WO3纳米花材料的制备及其在气体传感器中的应用

    公开(公告)号:CN110255621A

    公开(公告)日:2019-09-20

    申请号:CN201910649152.7

    申请日:2019-07-18

    Applicant: 东北大学

    Abstract: 本发明提供一种WO3纳米花材料的制备及其在气体传感器中的应用。采用NaOH浸出工艺提取白钨精矿中的钨,以获得含钨的浸出液;将浸出液加入到HCl溶液中形成钨酸沉淀物,将洗涤后的钨酸加入去离子水以及H2O2溶解;用HCl溶液调混合溶液pH值至1.2~1.8,经100~180℃恒温条件下反应4~16h后,获得由纳米片自组装而成的WO3纳米花,该纳米花的直径为300~420nm、厚度为100~140nm,纳米片的长度为170~390nm、宽度为120~140nm、厚度为30~50nm,具有六方相晶体结构。将此WO3纳米花涂覆于陶瓷管外表面的金电极上,然后经老化处理制备成气体传感器。基于本发明方法制备NO2气体传感器,可以实现对低浓度、甚至ppb级NO2气体的高选择性、低工作温度的快速响应。

Patent Agency Ranking