一种PtSnx-rGO-SnO2纳米复合材料及其制备方法和应用

    公开(公告)号:CN114894852B

    公开(公告)日:2024-06-14

    申请号:CN202210236492.9

    申请日:2022-03-11

    Applicant: 东北大学

    Abstract: 本发明涉及一种PtSnx‑rGO‑SnO2纳米复合材料及其制备方法和应用,属于气体传感器领域。一种PtSnx‑rGO‑SnO2纳米复合材料的制备方法,向GO分散液中加入十二烷基硫酸钠,搅拌均匀后加入SnCl2·2H2O和H2PtCl6·6H2O,得混合溶液;将所得混合溶液进行回流反应,然后降温至室温后加入H2O2并搅拌0.5~2h,得中间产物;将中间产物离心后去上清液,洗涤、干燥,于Ar气氛围下以10℃/min升温至500℃,热处理1~3h后降至室温,获得PtSnx‑rGO‑SnO2纳米复合材料。通过简单的回流法制备的PtSnx‑rGO‑SnO2纳米复合材料有效地解决了传统气敏材料检测H2存在的工作温度较高、灵敏度低、成本高等问题,具有较好的应用价值和发展前景。

    一种在强碱性液体环境下制备rGO-SnO2纳米复合材料的方法

    公开(公告)号:CN115266843A

    公开(公告)日:2022-11-01

    申请号:CN202210869215.1

    申请日:2022-07-21

    Applicant: 东北大学

    Abstract: 本发明涉及一种在强碱性液体环境下制备rGO‑SnO2纳米复合材料的方法,属于纳米材料领域。一种在强碱性液体环境下制备rGO‑SnO2纳米复合材料的方法,向GO分散液中加入SnCl4·5H2O和NaOH并搅拌10~30min得强碱性液体,所述强碱性液体环境为pH=8~13.94的液体环境;将所得强碱性液体在180~200℃条件下水热反应10~20h,然后将产物离心、洗涤、干燥,于Ar气氛围下以10℃/min升温至600℃,热处理2~6h后获得rGO‑SnO2纳米复合材料。本发明通过以GO为基板通过水热法制备rGO‑SnO2纳米复合材料有效地解决了强碱性环境SnO2材料生长困难、产率小和传统气敏材料检测NO2存在的灵敏度低、长期稳定性差等问题,具有较好的应用价值和发展前景。

    一种基于非水解溶胶-凝胶WO3多孔薄膜的NO2气敏元件及其制备方法

    公开(公告)号:CN109187665B

    公开(公告)日:2021-05-14

    申请号:CN201811103292.6

    申请日:2018-09-20

    Applicant: 东北大学

    Abstract: 本发明属于半导体金属氧化物气敏元件技术领域,具体涉及一种基于非水解溶胶‑凝胶WO3多孔薄膜的NO2气敏元件及其制备方法。所述气敏元件主要由电极元件和均匀涂覆在电极元件上的WO3多孔薄膜气敏层组成,所述WO3多孔薄膜由WO3纳米凝胶颗粒旋涂而成,所述WO3纳米凝胶颗粒直径为20~60nm,所述WO3为单斜晶体结构。本发明方法操作简单、反应易于控制、合成周期短,有效解决了传统制备方法成本高、合成周期长等缺点。通过该方法制备的气体气敏元件在工作温度100℃时获得对NO2气体的最大灵敏度,响应和恢复时间短、选择性高,是具有良好发展前景的NO2气敏元件。

    一种基于rGO-SnO2纳米复合材料的NO2气敏元件及其制备方法

    公开(公告)号:CN110243881B

    公开(公告)日:2020-07-31

    申请号:CN201910640005.3

    申请日:2019-07-16

    Applicant: 东北大学

    Abstract: 本发明公开了一种基于rGO‑SnO2纳米复合材料的NO2气敏元件及其制备方法,属于石墨烯‑金属氧化物复合材料气敏元件技术领域。所述气敏元件主要由电极元件和均匀涂覆在电极元件上的rGO‑SnO2纳米复合材料组成,所述rGO‑SnO2纳米复合材料的微观形貌为在还原氧化石墨烯片层上均匀生长着SnO2纳米球,所述SnO2纳米球直径为40~70nm,为四方锡石相结构。本发明采用一步水热法制备出比表面积大、电阻率低、分散性良好的rGO‑SnO2纳米复合材料,然后将rGO‑SnO2纳米复合材料作为气敏涂层制备出NO2气敏元件。该气敏元件有效地解决了传统NO2气敏元件工作温度较高及石墨烯类气敏元件灵敏度较低、恢复时间较长等问题,具有较好的应用价值和发展前景。

    一种聚丙烯酰胺的制备方法

    公开(公告)号:CN103554320B

    公开(公告)日:2015-08-12

    申请号:CN201310506700.3

    申请日:2013-10-25

    Abstract: 本发明公开了属水溶性高分子材料合成技术领域的一种聚丙烯酰胺的制备方法,采用无机纳米二氧化硅和过硫酸铵作为复合引发剂,经过低温、低压反应,然后烘干、粉碎,可制备分子量100万以上的聚丙烯酰胺。复合引发剂,促使丙烯酰胺在纳米粒子表面聚合;与传统制备方法相比,该方法制备过程简单,条件易于控制,容易进行大规模工业性生产,产物分子量在170万左右。

    一种SnO2量子点-硫化物复合气敏材料及其制备方法和在NH3传感器中的应用

    公开(公告)号:CN115684289A

    公开(公告)日:2023-02-03

    申请号:CN202211144629.4

    申请日:2022-09-20

    Applicant: 东北大学

    Abstract: 本发明涉及一种SnO2量子点‑硫化物复合气敏材料及其制备方法和在NH3传感器中的应用,属于气体传感器领域。一种SnO2量子点‑硫化物复合气敏材料,所述SnO2量子点‑硫化物复合气敏材料的微观形貌为SnO2量子点均匀生长在硫化物表面,其中,SnO2量子点的晶体结构为四方相晶体结构;所述硫化物为由硫化物纳米片组装而成的分级多孔花状结构,所述硫化物为MoS2或SnS2,晶体结构为六方相晶体结构。本发明的SnO2量子点‑硫化物复合气敏材料通过SnO2量子点的高活性,硫化物表面丰富的成核位点和高的载流子迁移速率,以及二者之间形成异质结构的协同效应,解决了室温条件下NH3传感器灵敏度低,响应/恢复速率慢的问题。

    一种用白钨精矿合成Au掺杂WO3纳米片的方法和应用

    公开(公告)号:CN109850948B

    公开(公告)日:2021-03-12

    申请号:CN201910194494.4

    申请日:2019-03-14

    Applicant: 东北大学

    Abstract: 一种用白钨精矿合成Au掺杂WO3纳米片的方法和应用,涉及半导体氧化物的气体传感器领域。一种用白钨精矿合成Au掺杂WO3纳米片的方法,方法如下:采用NaOH浸出工艺对白钨精矿进行转化及初步提纯,以获得含钨酸钠的浸出液,将溶液稀释成钨酸钠浓度为0.019~0.044mol/L的溶液作为前驱体,与HAuCl4溶液、CaCl2溶液混合,所述混合比例为Au、W与Ca的摩尔比为0.3%~1%:1:3~14。基于本发明方法制备的Au掺杂WO3纳米片NO2气敏元件,可以实现对低浓度、甚至ppb级NO2气体的高灵敏度、高选择性的快速检测。采用廉价、低污染的白钨精矿为钨源,从原材料及制备过程大幅度的降低成本。

    一种用白钨精矿合成Au掺杂WO3纳米片的方法和应用

    公开(公告)号:CN109850948A

    公开(公告)日:2019-06-07

    申请号:CN201910194494.4

    申请日:2019-03-14

    Applicant: 东北大学

    Abstract: 一种用白钨精矿合成Au掺杂WO3纳米片的方法和应用,涉及半导体氧化物的气体传感器领域。一种用白钨精矿合成Au掺杂WO3纳米片的方法,方法如下:采用NaOH浸出工艺对白钨精矿进行转化及初步提纯,以获得含钨酸钠的浸出液,将溶液稀释成钨酸钠浓度为0.019~0.044mol/L的溶液作为前驱体,与HAuCl4溶液、CaCl2溶液混合,所述混合比例为Au、W与Ca的摩尔比为0.3%~1%:1:3~14。基于本发明方法制备的Au掺杂WO3纳米片NO2气敏元件,可以实现对低浓度、甚至ppb级NO2气体的高灵敏度、高选择性的快速检测。采用廉价、低污染的白钨精矿为钨源,从原材料及制备过程大幅度的降低成本。

    一种基于非水解溶胶-凝胶WO3多孔薄膜的NO2气敏元件及其制备方法

    公开(公告)号:CN109187665A

    公开(公告)日:2019-01-11

    申请号:CN201811103292.6

    申请日:2018-09-20

    Applicant: 东北大学

    Abstract: 本发明属于半导体金属氧化物气敏元件技术领域,具体涉及一种基于非水解溶胶-凝胶WO3多孔薄膜的NO2气敏元件及其制备方法。所述气敏元件主要由电极元件和均匀涂覆在电极元件上的WO3多孔薄膜气敏层组成,所述WO3多孔薄膜由WO3纳米凝胶颗粒旋涂而成,所述WO3纳米凝胶颗粒直径为20~60nm,所述WO3为单斜晶体结构。本发明方法操作简单、反应易于控制、合成周期短,有效解决了传统制备方法成本高、合成周期长等缺点。通过该方法制备的气体气敏元件在工作温度100℃时获得对NO2气体的最大灵敏度,响应和恢复时间短、选择性高,是具有良好发展前景的NO2气敏元件。

Patent Agency Ranking