-
公开(公告)号:CN120049642A
公开(公告)日:2025-05-27
申请号:CN202510510107.9
申请日:2025-04-23
Applicant: 哈尔滨工业大学(威海)
Abstract: 本申请提供了一种基于Q‑learning算法的无线充电多线圈快速匹配及定位方法,包括:步骤S1:建立多线圈阵列发射平台,以及实现平台相应能量传输单元灵活切换的供电网络;步骤S2:变换接收线圈的位置情况和不同能量传输单元的开启情况,建立充电环境信息;步骤S3:建立算法模型下的探索环境;步骤S4:智能体在未知环境中探索,依据动作选择策略执行动作,迭代更新Q值表;步骤S5:根据智能体执行动作,计算累计奖励;步骤S6:依据评价网络对智能体输出的动作策略进行评估,判断模型训练策略是否满足初始化要求,是,则实行步骤S7;否,则执行步骤S4;步骤S7:提取Q值表,输出线圈定位与匹配策略。本申请应用于无线充电技术领域。
-
公开(公告)号:CN119996127A
公开(公告)日:2025-05-13
申请号:CN202311502682.1
申请日:2023-11-10
Applicant: 哈尔滨工业大学(威海) , 北京宇航系统工程研究所
Abstract: 本发明涉及水声通信技术领域,具体的说是一种面向水声通信的联合多分支均衡与极化码译码方法,与现有技术相比,多分支均衡和极化码译码间并不是相互独立的,而是在这两个模块间构成了环路,通过在两个模块间交换软信息,可进一步改善联合性能,仿真结果验证了本发明环路迭代的有效性,通过与已有算法的性能比较,也说明了所提本发明的优势。
-
公开(公告)号:CN119217920B
公开(公告)日:2025-03-28
申请号:CN202411764054.5
申请日:2024-12-04
Applicant: 哈尔滨工业大学(威海) , 威海天航信息技术有限公司
IPC: B60G17/016 , B60G17/02 , G01S7/40
Abstract: 本发明提供了一种车架载小型化高速探地雷达抖动补偿方法及补偿系统,涉及探地雷达探测技术领域,包括数据处理器接收倾斜姿态信息,计算车架倾斜角,补偿处理器接收车架倾斜角度,由补偿处理器对车架倾斜角度信息进行基于路况自适应噪声与角度阈值调整以及多模型切换卡尔曼滤波处理,预测下一时刻车架平台的姿态信息并更新角度阈值;同时补偿处理器依据预测的数据生成补偿运动命令并发送到机械补偿装置的位移控制器;距离补偿算法处理得到运动信息,将运动信息传递给机械补偿装置执行补偿动作。本申请利用卡尔曼滤波处理,自适应噪声与角度阈值调整机制,线性与非线性补偿切换机制进行预测更新,根据路面变化自适应调整,提高数据采集的准确性。
-
公开(公告)号:CN118915011B
公开(公告)日:2025-03-07
申请号:CN202411372332.2
申请日:2024-09-29
Applicant: 哈尔滨工业大学(威海)
IPC: G01S7/41
Abstract: 本申请提供了一种基于毫米波MIMO雷达的低复杂度超分辨3D估计方法,解决了现有雷达角度估计分辨率低、角度分辨能力差和计算复杂度高的技术问题。其包括:利用DDM‑MIMO雷达去获取离散中频信号,对其进行频域预处理得到角度数据矩阵;利用角度超分辨算法对角度数据矩阵进行计算,得到三维参数估计结果;其中,频域预处理包括2D‑FFT预处理、目标检测和加入额外空带的解模糊;角度超分辨算法指,通过波束空间转换、实值变换得到协方差矩阵,随后利用多级维纳滤波器获取信号子空间,构建ESPRIT算法的移不变方程并求解,得出三维参数估计结果。本申请可广泛应用于毫米波MIMO雷达的技术领域。
-
公开(公告)号:CN118310526B
公开(公告)日:2025-01-24
申请号:CN202410419204.2
申请日:2024-04-09
Applicant: 哈尔滨工业大学(威海)
IPC: G01C21/20 , G06F18/10 , G06F18/23213 , G06F18/2433 , H03H17/02
Abstract: 本发明提供了一种动态拓扑下基于因子图的多AUV量测滤波方法及系统,属于多AUV协同定位领域。为了解决现有的多AUV协同定位系统量测信息中会产生野值,降低系统的定位性能的问题。本发明在水下多AUV协同定位量测信息中存在野值的情况下,通过对动态拓扑下基于因子图的多AUV协同定位算法引入k‑means算法进行量测野值滤波,保障了水下协同定位在少量提高运行时间的情况下,大幅提升定位精度和鲁棒性,保障了水下作业时对于定位以及导航精度的需求;且通过仿真实验可知,本发明提升了64.54%的定位精度,面对量测野值也更加稳定。
-
公开(公告)号:CN119217920A
公开(公告)日:2024-12-31
申请号:CN202411764054.5
申请日:2024-12-04
Applicant: 哈尔滨工业大学(威海) , 威海天航信息技术有限公司
IPC: B60G17/016 , B60G17/02 , G01S7/40
Abstract: 本发明提供了一种车架载小型化高速探地雷达抖动补偿方法及补偿系统,涉及探地雷达探测技术领域,包括数据处理器接收倾斜姿态信息,计算车架倾斜角,补偿处理器接收车架倾斜角度,由补偿处理器对车架倾斜角度信息进行基于路况自适应噪声与角度阈值调整以及多模型切换卡尔曼滤波处理,预测下一时刻车架平台的姿态信息并更新角度阈值;同时补偿处理器依据预测的数据生成补偿运动命令并发送到机械补偿装置的位移控制器;距离补偿算法处理得到运动信息,将运动信息传递给机械补偿装置执行补偿动作。本申请利用卡尔曼滤波处理,自适应噪声与角度阈值调整机制,线性与非线性补偿切换机制进行预测更新,根据路面变化自适应调整,提高数据采集的准确性。
-
公开(公告)号:CN119199829A
公开(公告)日:2024-12-27
申请号:CN202411301749.X
申请日:2024-09-18
Applicant: 哈尔滨工业大学(威海) , 威海蓝湾海洋工程装备研究院有限公司 , 威海天航信息技术有限公司
Abstract: 本发明一种无人艇载高海况下海面目标检测装置及方法,涉及海况目标检测领域,为解决现有海面目标检测装置在高海况及恶劣天气下,受环境干扰较大,检测性能下降,难以实现目标的精确检测和灵活的实时跟踪的问题。包括:伸缩装置、位姿补偿装置和检测平台;所述检测平台包括底托和安装在底托上的监测雷达和电子水平仪;所述位姿补偿装置位于检测平台的下方,用于控制检测平台的翻动及上下移动;所述伸缩装置的底端固定在无人艇甲板上,所述伸缩装置的另一端与位姿补偿装置的底部中心相连接,用于控制位姿补偿装置的高度及使其自转,以进一步控制监测雷达对目标的持续跟踪;所述高海况下海面目标检测装置还包括预警装置、监测相机和电子陀螺仪。
-
公开(公告)号:CN116911535B
公开(公告)日:2024-11-22
申请号:CN202310791477.5
申请日:2023-06-30
Applicant: 哈尔滨工业大学(威海)
IPC: G06Q10/0631 , G06Q30/08
Abstract: 本发明提供一种基于改进CBBA算法的多无人船动态任务分配方法及系统,属于多无人船动态任务分配技术领域。为解决传统CBBA算法在任务重分配方案的计算上存在路径代价指标高、任务完成量低,对于新任务或突发情况会导致无人船任务能力消失的问题。通过构建无人船优先选择集群,来提高算法的计算速度,使算法快速收敛,引入距离奖惩因子和判断时间窗约束的指示变量,根据代价函数构建任务包,使任务分配方案趋向于让无人船执行距离较近任务,使环境内每个具有任务执行能力的个体以自身收益最大、损失最小为目标自行构建任务包;加入时间窗约束,将不符合的任务排除保留符合的任务,再进行冲突消解,最后判断无人船间是否达成共识。
-
公开(公告)号:CN118329014B
公开(公告)日:2024-11-15
申请号:CN202410488155.8
申请日:2024-04-23
Applicant: 哈尔滨工业大学(威海)
IPC: G01C21/08 , G06F18/243 , G06N3/045 , G01C21/20 , G01C21/34
Abstract: 本发明提供一种粗精匹配结合的地磁道路定位方法、系统及存储介质,涉及智能驾驶领域,为解决现有方法计算量大,地磁数据特征维度少,导致算法易受测量噪声影响的问题。包括:步骤一、获取沿路径的地磁标量、三轴地磁矢量、车辆三轴姿态角信息,建立空间序列地磁基准库;步骤二、对基准库进行采样,获取训练集一对预构建的随机森林分类器进行训练,得到粗匹配模型;步骤三、获取训练集二对预构建的多尺度孪生神经网络进行训练,得到精匹配模型;步骤四、获取车辆行驶时地磁强度与姿态角的空间序列;步骤五、使用粗匹配模型确定当前车辆所在道路,使用精匹配模型确定当前车辆所在道路中的位置;步骤六、重复执行步骤四至步骤五,至定位结束。
-
公开(公告)号:CN116698066B
公开(公告)日:2024-11-15
申请号:CN202310660557.7
申请日:2023-06-02
Applicant: 哈尔滨工业大学(威海)
IPC: G01C21/34
Abstract: 基于邻域扩展和边界点改进A‑star算法的机器人路径规划方法及系统,涉及机器人路径规划技术领域,为了解决传统A‑star算法路径规划时存在搜索时间长、自由度不高、搜索的路径具有很多转折点等一些问题,可能会导致规划得到的最短路径不是实际机器人的最优移动路径,以及为了兼顾移动机器人在各方面的优良性而提出的。首先,将A‑star算法扩展搜索邻域;其次,针对局部无障碍环境下,传统算法搜索效率低,且规划时间长等问题,利用局部障碍环境分块规划的思想,基于两点线段最短原理,对环境信息进行分析。在路径连接过程中,若路径中不存在障碍物,则直接直线连接起点与终点;否则,通过求取相交障碍物的边界点,将路径分为多个局部路径进行规划,最后合并得到整体路径。具体实现为在起点与最后一个边界点之间使用改进A‑star算法求解最短路径,在边界点与终点之间直接直线连接。
-
-
-
-
-
-
-
-
-