一种基于无线通信技术的室内实时滑雪竞技系统

    公开(公告)号:CN118743845A

    公开(公告)日:2024-10-08

    申请号:CN202410729915.X

    申请日:2024-06-06

    Abstract: 本发明公开了一种基于无线通信技术的室内实时滑雪竞技系统。基于无线通信技术的室内实时滑雪竞技系统以无线传输模块与云端数据存储模块为核心,串联起滑雪者的现实运动与虚拟竞技,室内滑雪机上的滑雪者穿戴动作感知模块与UWB定位模块,两个模块分别采集滑雪者的人体姿态数据与位置数据,无线传输模块对所采集到的数据进行打包传输,并对数据进行校验,云端数据存储模块对无误的数据进行储存。模拟滑雪竞技显示模块访问云端数据,姿态数据驱动人体三维模型,位置数据驱动滑雪轨迹的实时更新,显示屏实时更新各个滑雪者滑雪姿态与轨迹的变化,从而实现跨地域的实时同台滑雪竞技。

    一种基于VMD-神经网络模型的机载MIMU数据去噪方法

    公开(公告)号:CN118410280A

    公开(公告)日:2024-07-30

    申请号:CN202410625300.2

    申请日:2024-05-20

    Abstract: 本发明公开了一种基于VMD‑神经网络模型的机载MIMU数据去噪方法,主要解决机载MIMU量测噪声大和零偏大的难题,且MIMU数据去噪方法包含四个模块,即变分模态分解模块,神经网络模型包含一维卷积神经网络、双向长短时间记忆网络和全连接神经网络三个模块。首先,采用固定翼无人机作为MIMU的载体用于获取数据集。然后,对数据集进行预处理,包括差分方法和滑窗方法处理数据集使其成为有监督学习式的数据集。接下来,将预处理后数据集按8:2的比例分为训练集和测试集。采用VMD‑CNN‑BiLSTM‑FCNN模型对训练集和测试集分别进行训练和测试。本发明提出的神经网络模型能够有效降低机载环境噪声、机械振动噪声、气流噪声和飞行气动噪声等多种噪声源对MIMU测量精度的影响,具有鲁棒性。

    一种水空跨介质下航行器多传感器融合导航方法

    公开(公告)号:CN116952236A

    公开(公告)日:2023-10-27

    申请号:CN202310779653.3

    申请日:2023-06-29

    Abstract: 本发明公开了一种水空跨介质下航行器多传感器融合导航方法,涉及技术领域;属于跨介质导航技术领域,为了解决跨介质航行器在介质跨越过程中的精密导航定位难题;以微惯性单元为核心,辅以其他传感器来对惯性测量信息进行修正,实现跨介质航行器对高速率、精密可靠导航信息需求,利于航行器介质跨越过程稳定控制。搭建了联邦滤波器来协调各个传感器的导航信息,分别在空中、水空交界处和水下采用不同的传感器组合进行导航信息融合,同时采用基于传感器信息的模式切换方法,提高了航行器在不同介质跨越过程中导航输出速率、精度与稳定性。从而使系统可以适应航行器全域导航需求,保障水空跨介质环境下的精密导航与安全控制。

    一种基于初始姿态角自对准的小径管道机器人定位方法

    公开(公告)号:CN111536969B

    公开(公告)日:2022-12-13

    申请号:CN202010298783.1

    申请日:2020-04-16

    Abstract: 本发明提供一种基于初始姿态角自对准的小径管道机器人定位方法,属于管道测绘技术领域。以四轮线缆驱动式小径管道机器人为运动检测平台,微惯性传感器与里程仪组合的方式实现城市地下小径管道机器人的精确定位。霍尔式里程仪安装在管道机器人后轮上,实现管道机器人运行速度实时测量。结合管道机器人在被检测管道初始段的直线加速运动,可计算出管道机器人的初始姿态角信息,然后结合初始速度和位置信息可实现管道机器人定位系统初始自对准。本发明的小径管道机器人在进行城市地下等复杂场合管道检测时,无需引入高精度方位角参考设备,成本低、使用方便。

    一种机载双天线GNSS和MINS组合导航系统及导航方法

    公开(公告)号:CN115453601A

    公开(公告)日:2022-12-09

    申请号:CN202211208677.5

    申请日:2022-09-30

    Abstract: 本发明涉及导航技术领域,具体涉及一种机载双天线GNSS和MINS组合导航系统,包括惯性数据测量模块、机载双天线模块、姿态解算模块、误差补偿模块和计算模块,还包括GNSS信号分析模块和地面控制端,所述GNSS信号分析模块用于判断当前GNSS信号是否可用,若不可用,则向地面控制端发送当前GNSS信号不可用;所述地面控制端在接收到当前GNSS信号不可用后,调取当前机体所在位置的历史导航数据,并根据历史导航数据判断当前机体机载双天线模块是否发生故障,若是,则向GNSS信号分析模块发出故障信号。本发明可在机体接收不到卫星信号或接收到的卫星信号不满足精度需求的情况下,较准确的判断机载双天线模块是否发生故障。本发明还公开一种机载双天线GNSS和MINS组合导航方法。

    一种高动态无人机的加速度计干扰加速度自补偿方法

    公开(公告)号:CN111307179A

    公开(公告)日:2020-06-19

    申请号:CN202010191289.5

    申请日:2020-03-18

    Abstract: 本发明公开了一种高动态无人机的加速度计干扰加速度自补偿方法,涉及航空飞行器控制技术领域;它的方法为利用低通滤波后的加速度计三轴输出模值和当地重力加速度的差值与阈值进行比较,判断是否存在加速度机动,若不存在加速度机动,则进一步根据导航系下的水平计算加速度与另一阈值比较,综合判断加速度机动存在情况;在判断出存在大加速度机动情况下,将加速度计测量值根据机动加速度由无人机纵向或横向机动产生分别进行补偿;本发明成本低,可以不依赖GPS传感器等任何辅助传感器,仅利用加速度计测量信息进行自补偿,尤其适用于低成本微惯性垂直陀螺仪;有利于提升后续多传感器融合技术的姿态测量精度。

    一种管道拐弯角检测方法
    58.
    发明公开

    公开(公告)号:CN111220113A

    公开(公告)日:2020-06-02

    申请号:CN202010031437.7

    申请日:2020-01-13

    Abstract: 本发明公开一种管道拐弯角检测方法,包括:通过检测装置在管道中的运动,利用三轴加速度计、三轴陀螺仪和多里程仪分别采三轴加速度、三轴角速率和轴向速度。同时,数据处理单元对采集到的测量值进行处理并存储在数据存储单元中。检测完成后,离线条件下结合三轴加速度计、三轴陀螺仪和多里程仪的输出信息,在检测装置检测前的初始姿态、速度和位置已知的条件下,采用捷联惯性导航算法计算出小径管道检测机器人在管道内运动的姿态、速度和位置信息;根据多里程仪测量信息分别对检测装置在管道内运动时的速度信息进行修正,进而提高定位精度。本发明的检测结果可适用于城市高楼、高架桥、隧道、室内等GPS无法定位的环境下提高管道检测及定位精度。

    一种基于机械手臂学习的电子设备与方法

    公开(公告)号:CN107932515A

    公开(公告)日:2018-04-20

    申请号:CN201711138534.0

    申请日:2017-11-16

    CPC classification number: B25J9/0081

    Abstract: 本发明一种基于机械手臂学习的电子设备与方法属于机器人学习领域;该装置包括电子设备主板、电池、陀螺仪和加速度计设置在电子设备外壳内,显示屏、压力传感器和压力传感器模设置在电子设备外壳外,压力传感器上粘贴压力传感器模,显示屏、压力传感器、陀螺仪和加速度计连接电子设备主板,电池为电子设备供电;该方法包括电子设备和机械臂的通信和初始坐标对准,人手握电子设备示教;传输人手的运动形式和人手握电子设备的用力程度参数;机械臂根据参数调整其各个关节的位置及力矩状态,跟随人手运动并完成动作;机械臂记录数据作基础数据,重复示教;本发明节约了人力教学的时间,通过数据传输更容易让机械臂接受,做起动作更自然和灵活。

Patent Agency Ranking