-
公开(公告)号:CN118884277A
公开(公告)日:2024-11-01
申请号:CN202410930020.2
申请日:2024-07-11
Applicant: 哈尔滨工业大学(威海)
IPC: G01R31/392 , G01R31/367 , G01R31/396 , G06F18/2433 , G06F17/18
Abstract: 本发明涉及电池故障诊断技术领域,公开了一种电池种锂离子电池组热失控早期诊断方法,包括S1、获取锂离子电池组单体电压数据;S2、对获取的单体电压数据中的异常值进行处理;S3、基于时间、充电状态、SOC、里程对单体电压数据进行切分;S4、在获得切分后的单体电压充电片段Vc、放电片段Vd及充电电流I后,从中提取故障特征;S5、获得所需的各类特征后,构建故障诊断模型,实现对多模态特征的处理,进而实现故障诊断。本发明有益效果在于:实现了对多维电池故障特征的融合输入与处理,对不同故障具有广泛的适应性,具有较好的准确率与可靠性,同时无监督学习的方法大大降低了故障诊断难度。
-
公开(公告)号:CN115469226B
公开(公告)日:2024-08-20
申请号:CN202210913103.1
申请日:2022-08-01
Applicant: 哈尔滨工业大学(威海)
IPC: G01R31/367 , G01R31/389 , G01R31/396
Abstract: 本发明公开了一种基于运行大数据的电动汽车动力电池实时安全预警方法,包括以下步骤:S1、数据读取,读取动力电池过往历史数据的总电流、总SOC、以及单体电压;S2、数据清洗,针对缺失数据、重复值数据、错误数据进行清洗;S3、数据分析,提取不同充电时刻的电压值,建立OCV‑SOC曲线;S4、参数辨识,通过拟合得到的OCV‑SOC曲线,对实时采集数据利用Rint模型进行参数辨识,得到充电段的直流内阻和放电段的直流内阻;S5、安全预警,对充电片段内阻和放电片段内阻进行预警。本发明的有益效果在于:基于内阻信息提出的时间空间双维度安全预警方法即能有效诊断出发生故障的具体时间,还能诊断出现故障的具体电池单体,有效的实现电池系统安全精确预警。
-
公开(公告)号:CN113933714B
公开(公告)日:2024-07-02
申请号:CN202111204509.4
申请日:2021-10-15
Applicant: 哈尔滨工业大学(威海)
IPC: G01R31/367 , G01R31/388 , H01M10/0525
Abstract: 基于简化电化学模型和灰色预测联合的电池容量预测方法,属于电池性能衰减预测领域,为了解决对锂离子电池性能衰减预测精度低的问题。获取锂离子电池在充放电情况下的电流数据和电化学模型参数,所述电化学模型参数包括多个电化学参数;将每个电化学参数在设定的变化范围内取多个均分值,分别代入对应的电化学模型中进行电池放电仿真,获得每个电化学参数的敏感度;从多个电化学参数的敏感度中选出高于预设敏感值的电化学参数作为关键敏感参数;利用灰色预测模型预测关键敏感参数的退化,得到关键敏感参数的预测值;将关键敏感参数的预测值代入电化学模型中模拟恒流放电至截止电压处,预测出锂离子电池的放电容量。它用于预测电池容量。
-
公开(公告)号:CN114814593B
公开(公告)日:2024-06-11
申请号:CN202210466822.3
申请日:2022-04-29
Applicant: 哈尔滨工业大学(威海)
IPC: G01R31/367 , G06F18/22
Abstract: 本发明公开了一种两步检测策略的电池组多故障快速诊断方法,包括以下步骤:S1、按照串‑并联交错电压测量设计布置传感器的位置,在不同的故障条件下,采集每个传感器测量的电压数据;S2、建立闵氏距离相似度计算公式;S3、根据闵氏距离相似度计算模型计算闵氏距离相似度,建立故障诊断策略;S4、建立基于阈值的能够区分出具有相似特征故障的隔离模型。本发明的有益效果在于:根据串‑并联电池组交错电压测量设计,可以有效地识别并定位出连接松脱故障、传感器故障和短路故障,无需复杂的电池模型,对数据依赖度低,计算量小。
-
公开(公告)号:CN112009252B
公开(公告)日:2023-12-01
申请号:CN202011072539.X
申请日:2020-10-09
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明提供了一种动力电池系统故障诊断及容错控制方法,采用了以端电压为输入、电流为输出的包含电流传感器故障值在内的增广状态空间方程,通过算法实时估计出电流传感器故障值,当故障值的绝对值超过阈值即可判断传感器发生故障,然后对模型参数辨识和SOC估计进行容错控制。因该方法以电流为输出,故更适合检测电流传感器故障。此外,增广状态空间方程包含传感器故障值有助于后续参数辨识和状态估计的容错控制,提高了系统的可靠性。
-
公开(公告)号:CN117103997A
公开(公告)日:2023-11-24
申请号:CN202311080934.6
申请日:2023-08-25
Applicant: 哈尔滨工业大学(威海) , 重庆理工大学
Abstract: 本发明具体涉及一种计及电池系统放电数据的电池热失控风险检测方法,包括:在电池组充放电过程中采集电池组的特征数据;对电池组的特征数据进行充放电循环的划分,并提取电池组某次循环的放电数据;通过纵向离群均值算法根据电池组所选循环的放电数据,计算各个单体电池所选循环的电池热失控风险值;将电池热失控风险值超过设置的风险阈值的单体电池作为可疑电池;通过设置的判断机制对可疑电池进行进一步检测,并根据检测结果进行电池热失控风险报警。本发明能够对电池热失控风险进行量化评估以直观且有效的获知电池的热失控风险,能够改善电池热失控误报警频发的问题,从而提高电池热失控风险检测的准确性和有效性。
-
公开(公告)号:CN115754724A
公开(公告)日:2023-03-07
申请号:CN202211075104.X
申请日:2022-09-03
Applicant: 哈尔滨工业大学(威海)
IPC: G01R31/36 , G01R31/367 , G01R31/378 , G01R31/392 , G01R31/396
Abstract: 一种适用于未来不确定性动态工况放电的动力电池健康状态估计方法,包括以下步骤:S1、采用Thevenin模型构建电池模型;S2、电池模型的参数辨识;S3、提取端电压误差均值和中位数;S4、采用欧氏距离来描述电池老化之前和老化之后的差异;S5、建立欧氏距离与电池SOH之间的经验模型。本发明的有益效果在于:能够通过未来不确定性动态工况放电的数据估计电池的SOH,模型具有良好的精度和泛化性能;且不需要辨识电池模型每个老化点下的参数,仅辨识初始循环的电池模型的参数。
-
公开(公告)号:CN115598540A
公开(公告)日:2023-01-13
申请号:CN202211309229.4
申请日:2022-10-25
Applicant: 盐城工学院(CN) , 哈尔滨工业大学(威海)(CN)
IPC: G01R31/367 , G01R31/396
Abstract: 本发明公布了一种考虑宽温度的锂电池参数辨识及状态联合估计方法,所述方法为:由电池充放电实验得到电池的开路电压和SOC,拟合得到UOCV‑SOC曲线,从而建立电池一阶RC等效电路模型,获得空间状态方程;依次通过基于改进递推最小二乘法的参数辨识模块确定T‑α关系式、基于改进无迹卡尔曼滤波的状态估计模块确定T‑μ关系式;获取电池实时温度,经温度判别器决定给定温度是否变化,再根据T‑α、T‑μ关系式分别得到参数辨识最佳遗忘因子α、状态估计最佳遗忘因子μ,将α反馈给模型参数辨识模块,以更新模型参数,更新的模型参数再与μ一起反馈给状态估计模块,以进一步更新电池状态估计值,即得到更准确的SOC值。
-
公开(公告)号:CN114723105A
公开(公告)日:2022-07-08
申请号:CN202210242862.X
申请日:2022-03-11
Applicant: 重庆理工大学 , 哈尔滨工业大学(威海)
Abstract: 本发明公开了一种基于0‑1规划的汽车零配件喷色生产排程方法,包括:获取喷色设备及喷色颜色数据,对所获取数据预处理;建立决策变量和中间变量;建立约束条件;建立目标函数及单目标优化模型;求解单目标优化模型。该方法通过选择事件发生的最基本情况为决策变量,为满足各条件建立合适的中间变量。决策变量和中间变量作为模型的基础,按照实际需求建立目标函数,根据条件限制建立约束方程,建立一个基于0‑1规划的单目标优化模型,该模型能够求出最优解且模型精度较高。
-
公开(公告)号:CN112464571B
公开(公告)日:2022-05-27
申请号:CN202011446598.9
申请日:2020-12-11
Applicant: 哈尔滨工业大学(深圳) , 哈尔滨工业大学(威海)
IPC: G06F30/27 , G06N3/00 , G06F111/04
Abstract: 基于多约束条件粒子群优化算法的锂电池组参数辨识方法,涉及锂离子电池组电化学模型参数辨识领域。本发明是为了解决现有只能对电池单体的行为进行辨识,不能对电池组状态整体预测的问题。步骤1、建立锂离子单体电池电化学模型;步骤2、采用激励响应法对锂离子电池单体电化学模型进行辨识,得到该模型参数值;步骤3、根据步骤2得到的模型参数值,设定锂离子电池组电化学模型的参数值范围;步骤4、采用多约束条件粒子群优化算法从设定锂离子电池组电化学模型的参数值范围中,得到锂离子电池组的模型参数向量。它用于检测锂离子电池组的状态。
-
-
-
-
-
-
-
-
-