基于闵氏距离和两步检测策略的电池组多故障诊断方法

    公开(公告)号:CN114814593A

    公开(公告)日:2022-07-29

    申请号:CN202210466822.3

    申请日:2022-04-29

    Abstract: 本发明公开了基于闵氏距离和两步检测策略的电池组多故障诊断方法,包括以下步骤:S1、按照串‑并联交错电压测量设计布置传感器的位置,在不同的故障条件下,采集每个传感器测量的电压数据;S2、建立闵氏距离相似度计算公式;S3、根据闵氏距离相似度计算模型计算闵氏距离相似度,建立故障诊断策略;S4、建立基于阈值的能够区分出具有相似特征故障的隔离模型。本发明的有益效果在于:根据串‑并联电池组交错电压测量设计,可以有效地识别并定位出连接松脱故障、传感器故障和短路故障,无需复杂的电池模型,对数据依赖度低,计算量小。

    基于神经网络的并联电池组安全预警方法

    公开(公告)号:CN114924192B

    公开(公告)日:2024-09-06

    申请号:CN202210556458.X

    申请日:2022-05-20

    Abstract: 本发明具体涉及基于神经网络的并联电池组安全预警方法,包括:构建支路电流预测模型,包括具有稀疏概率多头自注意力层的编码器和解码器;稀疏概率多头自注意力层具有自注意力蒸馏机制;编码器和解码器的输入相互独立,且编码器的输出连接至解码器中;采集并联电池组的实测数据,构建支路电流预测模型的训练数据集;通过训练数据集训练支路电流预测模型;将待测并联电池组的电池组特征数据输入经过训练的支路电流预测模型中,输出两条支路的预测电流,基于两条支路的预测电流判断并联电池组是否存在安全风险。本发明能够在面对大量训练数据时提高预测模型的训练效率和预测准确性,从而能够提高并联电池组的安全预警效果。

    基于支路电流估计误差的并联电池组健康状态估计方法

    公开(公告)号:CN116774047A

    公开(公告)日:2023-09-19

    申请号:CN202310742319.0

    申请日:2023-06-21

    Abstract: 本发明涉及电池健康管理技术领域,具体涉及基于支路电流估计误差的并联电池组健康状态估计方法,包括:基于神经网络构建支路电流估计模型;将电池组特征数据输入支路电流估计模型,输出两条支路的估计电流;根据两条支路的估计电流和实际电流计算支路电流估计误差;分别计算两条支路的电流估计误差与电流倍率的斜率,并取平均值作为并联电池组的电流估计斜率;拟合电流估计斜率与健康状态之间的双指数经验模型关系,得到并联电池组的健康状态模型;基于支路电流估计模型和健康状态模型实现并联电池组的健康状态估计。本发明能够基于支路电流和电流倍率有效估计并联电池组的健康状态,并且能够通过神经网络模型实现支路电流的准确预测。

    基于集成学习和实车大数据的电池健康状态估计方法

    公开(公告)号:CN116859259A

    公开(公告)日:2023-10-10

    申请号:CN202310898185.1

    申请日:2023-07-20

    Abstract: 本发明具体涉及基于集成学习和实车大数据的电池健康状态估计方法,包括:对获取的实车电池大数据进行数据切片,生成若干个充电片段数据;基于蒙特卡洛模拟对各个充电片段数据进行容量估计,得到SOH标签;提取各个充电片段数据的健康特征因子,进而结合对应的SOH标签构建训练数据集;构建用于预测电池SOH的Stacking集成学习模型,并通过训练数据集训练Stacking集成学习模型;对于待估计的目标车辆,提取目标车辆实车电池数据中的健康特征因子并输入训练后的Stacking集成学习模型,得到对应的电池SOH估计结果。本发明通过Stacking集成学习模型实现电池SOH预测,并且采用实车电池大数据来训练Stacking集成学习模型,从而提高电池健康状态估计的准确性和实际应用效果。

    一种基于运行大数据的电动汽车动力电池实时安全预警方法

    公开(公告)号:CN115469226A

    公开(公告)日:2022-12-13

    申请号:CN202210913103.1

    申请日:2022-08-01

    Abstract: 本发明公开了一种基于运行大数据的电动汽车动力电池实时安全预警方法,包括以下步骤:S1、数据读取,读取动力电池过往历史数据的总电流、总SOC、以及单体电压;S2、数据清洗,针对缺失数据、重复值数据、错误数据进行清洗;S3、数据分析,提取不同充电时刻的电压值,建立OCV‑SOC曲线;S4、参数辨识,通过拟合得到的OCV‑SOC曲线,对实时采集数据利用Rint模型进行参数辨识,得到充电段的直流内阻和放电段的直流内阻;S5、安全预警,对充电片段内阻和放电片段内阻进行预警。本发明的有益效果在于:基于内阻信息提出的时间空间双维度安全预警方法即能有效诊断出发生故障的具体时间,还能诊断出现故障的具体电池单体,有效的实现电池系统安全精确预警。

    基于神经网络的并联电池组安全预警方法

    公开(公告)号:CN114924192A

    公开(公告)日:2022-08-19

    申请号:CN202210556458.X

    申请日:2022-05-20

    Abstract: 本发明具体涉及基于神经网络的并联电池组安全预警方法,包括:构建支路电流预测模型,包括具有稀疏概率多头自注意力层的编码器和解码器;稀疏概率多头自注意力层具有自注意力蒸馏机制;编码器和解码器的输入相互独立,且编码器的输出连接至解码器中;采集并联电池组的实测数据,构建支路电流预测模型的训练数据集;通过训练数据集训练支路电流预测模型;将待测并联电池组的电池组特征数据输入经过训练的支路电流预测模型中,输出两条支路的预测电流,基于两条支路的预测电流判断并联电池组是否存在安全风险。本发明能够在面对大量训练数据时提高预测模型的训练效率和预测准确性,从而能够提高并联电池组的安全预警效果。

Patent Agency Ranking