一种基于数据与模型融合的动力电池SOC和SOH估计方法

    公开(公告)号:CN117148162A

    公开(公告)日:2023-12-01

    申请号:CN202311106779.0

    申请日:2023-08-30

    Abstract: 本发明具体涉及基于数据与模型融合的动力电池SOC和SOH估计方法,包括:构建动力电池的变阶次分数阶模型;基于变阶次分数阶模型估计动力电池的解析模型估计SOC;通过深度学习模型构建动力电池的SOC估计模型;基于SOC估计模型估计动力电池的数据驱动估计SOC;通过高斯融合原理对解析模型估计SOC和数据驱动估计SOC进行融合,得到融合SOC值;获取动力电池的容量先验估计值,通过融合SOC值修正容量先验估计值得到修正容量值;将融合估计SOC值和修正容量值作为SOC和SOH的估计结果。本发明能够将数据驱动模型和解析模型的SOC估计结果进行有效融合,并且能够利用准确估计的SOC来修正容量值(SOH),从而提高电池SOC和SOH联合估计的准确性和鲁棒性。

    一种基于机器学习的动力电池并联支路电流估计和矫正方法

    公开(公告)号:CN114740365A

    公开(公告)日:2022-07-12

    申请号:CN202210422955.0

    申请日:2022-04-21

    Abstract: 本发明公开了一种基于机器学习的动力电池并联支路电流估计和矫正方法,获取动态工况下的并联电池组的干路电路I,两条支路电流I1,I2以及支路电压V;利用安时积分法得到荷电状态SOCI;通过第一个BP神经网络对并联电池组支路电流进行估计,得到并联电池组支路电流估计值和除目标工况外其余动态工况估计误差EOB1和EOB2;通过第二个BP神经网络得到目标工况下两条支路电流估计值的误差和将目标工况下的支路电流估计值减去估计误差即可得到矫正后的支路电流估计值。本发明的有益效果在于:本发明首次提出对估计误差进行训练学些,形成双神经网络模型进行估计及矫正,大幅降低复杂工况下的电流估计误差。

    一种并联电池组支路电流、荷电状态和功率状态的联合估计方法

    公开(公告)号:CN114740357A

    公开(公告)日:2022-07-12

    申请号:CN202210278251.0

    申请日:2022-03-21

    Abstract: 本发明公开了一种并联电池组支路电流、荷电状态和功率状态的联合估计方法,该方法先获取并联电池组的支路电流,建立电池的等效电路模型,同时,将估计出的支路电流和端电压作为输入,利用带遗忘因子的递推最小二乘法辨识模型参数,在扩展卡尔曼滤波中加入可随残差变化的自适应遗忘因子来估计荷电状态,并进行荷电状态和端电压约束下的功率状态估计。本发明考虑到了锂离子电池单体间不一致性对支路电流的影响,可随残差变化的自适应遗忘因子也提高了扩展卡尔曼滤波的对不同环境的适应性,从而提高了支路电流、荷电状态和功率状态估计精度。

    基于闵氏距离和两步检测策略的电池组多故障诊断方法

    公开(公告)号:CN114814593A

    公开(公告)日:2022-07-29

    申请号:CN202210466822.3

    申请日:2022-04-29

    Abstract: 本发明公开了基于闵氏距离和两步检测策略的电池组多故障诊断方法,包括以下步骤:S1、按照串‑并联交错电压测量设计布置传感器的位置,在不同的故障条件下,采集每个传感器测量的电压数据;S2、建立闵氏距离相似度计算公式;S3、根据闵氏距离相似度计算模型计算闵氏距离相似度,建立故障诊断策略;S4、建立基于阈值的能够区分出具有相似特征故障的隔离模型。本发明的有益效果在于:根据串‑并联电池组交错电压测量设计,可以有效地识别并定位出连接松脱故障、传感器故障和短路故障,无需复杂的电池模型,对数据依赖度低,计算量小。

    一种基于机器学习的动力电池并联支路电流估计和矫正方法

    公开(公告)号:CN114740365B

    公开(公告)日:2024-12-06

    申请号:CN202210422955.0

    申请日:2022-04-21

    Abstract: 本发明公开了一种基于机器学习的动力电池并联支路电流估计和矫正方法,获取动态工况下的并联电池组的干路电路I,两条支路电流I1,I2以及支路电压V;利用安时积分法得到荷电状态SOCI;通过第一个BP神经网络对并联电池组支路电流进行估计,得到并联电池组支路电流估计值#imgabs0#和除目标工况外其余动态工况估计误差EOB1和EOB2;通过第二个BP神经网络得到目标工况下两条支路电流估计值的误差#imgabs1#和#imgabs2#将目标工况下的支路电流估计值减去估计误差即可得到矫正后的支路电流估计值。本发明的有益效果在于:本发明首次提出对估计误差进行训练学些,形成双神经网络模型进行估计及矫正,大幅降低复杂工况下的电流估计误差。

    一种两步检测策略的电池组多故障快速诊断方法

    公开(公告)号:CN114814593B

    公开(公告)日:2024-06-11

    申请号:CN202210466822.3

    申请日:2022-04-29

    Abstract: 本发明公开了一种两步检测策略的电池组多故障快速诊断方法,包括以下步骤:S1、按照串‑并联交错电压测量设计布置传感器的位置,在不同的故障条件下,采集每个传感器测量的电压数据;S2、建立闵氏距离相似度计算公式;S3、根据闵氏距离相似度计算模型计算闵氏距离相似度,建立故障诊断策略;S4、建立基于阈值的能够区分出具有相似特征故障的隔离模型。本发明的有益效果在于:根据串‑并联电池组交错电压测量设计,可以有效地识别并定位出连接松脱故障、传感器故障和短路故障,无需复杂的电池模型,对数据依赖度低,计算量小。

Patent Agency Ranking