-
公开(公告)号:CN112526350B
公开(公告)日:2022-05-27
申请号:CN202011453417.5
申请日:2020-12-11
Applicant: 哈尔滨工业大学(深圳) , 哈尔滨工业大学(威海)
IPC: G01R31/367 , G01R31/378
Abstract: 考虑热效应影响的锂离子电池峰值功率预测方法,涉及动力电池系统技术领域。本发明是为了解决现有利用电化学模型得到的峰值功率不准确的问题。建立锂离子电池的简化电化学模型;对锂离子电池的简化电化学模型进行参数辨识,得到辨识参数;获得锂离子电池内部变量;得到锂离子电池单体的端电压、不同时刻的电池内部温度和最大放电倍率;在初始放电倍率和最大放电倍率之间,分别找到3个临界放电倍率,从找到的3个临界放电倍率中选出最小值,并结合不同时刻锂离子电池单体的端电压平均值,得到锂离子电池峰值功率。它用于获得电池峰值功率,从而保护电池寿命。
-
公开(公告)号:CN112526350A
公开(公告)日:2021-03-19
申请号:CN202011453417.5
申请日:2020-12-11
Applicant: 哈尔滨工业大学(深圳) , 哈尔滨工业大学(威海)
IPC: G01R31/367 , G01R31/378
Abstract: 考虑热效应影响的锂离子电池峰值功率预测方法,涉及动力电池系统技术领域。本发明是为了解决现有利用电化学模型得到的峰值功率不准确的问题。建立锂离子电池的简化电化学模型;对锂离子电池的简化电化学模型进行参数辨识,得到辨识参数;获得锂离子电池内部变量;得到锂离子电池单体的端电压、不同时刻的电池内部温度和最大放电倍率;在初始放电倍率和最大放电倍率之间,分别找到3个临界放电倍率,从找到的3个临界放电倍率中选出最小值,并结合不同时刻锂离子电池单体的端电压平均值,得到锂离子电池峰值功率。它用于获得电池峰值功率,从而保护电池寿命。
-
公开(公告)号:CN112464571A
公开(公告)日:2021-03-09
申请号:CN202011446598.9
申请日:2020-12-11
Applicant: 哈尔滨工业大学(深圳) , 哈尔滨工业大学(威海)
IPC: G06F30/27 , G06N3/00 , G06F111/04
Abstract: 基于多约束条件粒子群优化算法的锂电池组参数辨识方法,涉及锂离子电池组电化学模型参数辨识领域。本发明是为了解决现有只能对电池单体的行为进行辨识,不能对电池组状态整体预测的问题。步骤1、建立锂离子单体电池电化学模型;步骤2、采用激励响应法对锂离子电池单体电化学模型进行辨识,得到该模型参数值;步骤3、根据步骤2得到的模型参数值,设定锂离子电池组电化学模型的参数值范围;步骤4、采用多约束条件粒子群优化算法从设定锂离子电池组电化学模型的参数值范围中,得到锂离子电池组的模型参数向量。它用于检测锂离子电池组的状态。
-
公开(公告)号:CN112464571B
公开(公告)日:2022-05-27
申请号:CN202011446598.9
申请日:2020-12-11
Applicant: 哈尔滨工业大学(深圳) , 哈尔滨工业大学(威海)
IPC: G06F30/27 , G06N3/00 , G06F111/04
Abstract: 基于多约束条件粒子群优化算法的锂电池组参数辨识方法,涉及锂离子电池组电化学模型参数辨识领域。本发明是为了解决现有只能对电池单体的行为进行辨识,不能对电池组状态整体预测的问题。步骤1、建立锂离子单体电池电化学模型;步骤2、采用激励响应法对锂离子电池单体电化学模型进行辨识,得到该模型参数值;步骤3、根据步骤2得到的模型参数值,设定锂离子电池组电化学模型的参数值范围;步骤4、采用多约束条件粒子群优化算法从设定锂离子电池组电化学模型的参数值范围中,得到锂离子电池组的模型参数向量。它用于检测锂离子电池组的状态。
-
公开(公告)号:CN117590269A
公开(公告)日:2024-02-23
申请号:CN202311583308.9
申请日:2023-11-24
Applicant: 哈尔滨工业大学(威海)
IPC: G01R31/392 , G01R31/367 , G01R31/396
Abstract: 本发明属于车载动力电池系统健康状态评估技术领域,公开了一种基于充电稀疏大数据的电池系统综合健康状态评估方法,包括步骤1、数据预处理;步骤2、容量衰减评估;步骤3、不一致性演化评估;步骤4、综合健康状态评价。本发明的有益效果在于:将电池系统的健康状态划分为容量衰减健康状态(SOHCap)和不一致性演化健康状态(SOHInc)两部分,同时将容量衰减健康状态和不一致性演化健康状态进行融合处理,得到了电池系统综合健康状态。
-
公开(公告)号:CN115201679A
公开(公告)日:2022-10-18
申请号:CN202210783435.2
申请日:2022-06-27
Applicant: 重庆理工大学 , 哈尔滨工业大学(威海)
IPC: G01R31/36 , G01R31/367 , G01R31/387 , G01R31/396
Abstract: 本发明具体涉及一种计及不一致性的储能电池系统状态估算方法,包括:在电池组充放电过程中,采集电池特征数据;基于单体电池间的不一致性确定电池组每条支路的特征单体电池,建立等效电路模型;构建用于预测估计电池SOC的观测器,分别得到各条支路的电池SOC估计值;计算各条支路的支路电流与电池组的平均支路电流之间的电流偏差,进而计算各条支路的支路电流标准差;基于支路电流标准差为各条支路分配相应的加权值;基于各条支路的电池SOC估计值及对应的加权值进行加权计算,得到电池组的融合SOC估计值作为其状态估算结果。本发明能够基于单体电池的不一致性建立具有互补性的电池组SOC融合预测框架,进而实现储能电池系统SOC的准确估计。
-
公开(公告)号:CN114970156A
公开(公告)日:2022-08-30
申请号:CN202210583641.9
申请日:2022-05-25
Applicant: 重庆理工大学 , 哈尔滨工业大学(威海)
Abstract: 本发明涉及车载电池快速充电技术领域,具体涉及用于五阶恒流快速充电的电流选取方法,包括:建立电池的等效电路模型;基于电池的等效电路模型结合五阶恒流充电特性,分析得到各阶电流之间的关系;基于电池的等效电路模型结合各阶电流之间的关系,求解在预设适应度函数下的初始电流组合;基于初始电流组合设计正交实验,进而根据实验结果确定充电的最佳电流组合。本发明的电流选取方法能够提高正交实验初始电流组合选取的准确性和有效性,进而能够准确、高效的确定充电的最佳电流组合,从而能够提高五阶恒流快速充电的优化效果。
-
公开(公告)号:CN114624603A
公开(公告)日:2022-06-14
申请号:CN202210254508.9
申请日:2022-03-15
Applicant: 哈尔滨工业大学(威海) , 北京空间飞行器总体设计部
IPC: G01R31/367 , G01R31/388 , G01R31/396
Abstract: 本发明公开了一种基于机器学习的电池系统支路电流估计方法,包括以下步骤:包括进行DST,FUDS,UDDS,HPPC四个工况下的离线测试,将整合的数据集进行归一化,设置BP神经网络的参数,对BP神经网络进行训练,得到训练好的BP神经网络,得到支路电流估计值。对比现有技术,本发明的有益效果在于:使用BP神经网络进行支路电流估计,BP神经网络算法比深度学习算法结构简单、训练学习快,占用内存小,更适合移动载运装备。
-
公开(公告)号:CN111965548B
公开(公告)日:2022-05-17
申请号:CN202011036233.9
申请日:2020-09-27
Applicant: 哈尔滨工业大学(威海) , 威海天达汽车科技有限公司
IPC: G01R31/367 , G01R31/378 , G01R31/382
Abstract: 本发明提供了一种基于状态估计法的电池系统传感器故障诊断方法。该方法为:首先构建电池模型,然后采用基于模型的方法进行电池荷电状态实时估计,然后采用一定时间段内的电量变化与荷电状态变化的比值确定电池容量,通过改变所用时间段的起点和终点所对应的初始时刻分别得到容量参考值和五组容量估计值,再将容量参考值和估计值分别做差得到五组容量残差,最后将五组容量残差分别和阈值进行对比,当一组或组个残差绝对值达到或超过阈值即可判定传感器出现故障。
-
公开(公告)号:CN112285569B
公开(公告)日:2022-02-01
申请号:CN202011181863.5
申请日:2020-10-29
Applicant: 哈尔滨工业大学(威海) , 北京空间飞行器总体设计部
IPC: G01R31/367 , G01R31/392
Abstract: 本发明提供一种基于动态阈值模型的电动汽车故障诊断方法,该方法用于电动汽车中电池系统故障诊断,在阈值模型建立和参数辨识算法两方面进行了改进,在不同温度下进行电路基础特性测试实验,得到等效电路模型参数;建立OCV‑SOC‑Q三维响应面模型;采用带遗忘因子的递推最小二乘法进行模型参数辨识,建立关于R0和τ的动态阈值模型。在实际故障诊断过程当中,利用双扩展卡尔曼滤波算法辨识参数和状态,得到电池R0和τ、容量及SOC;采用温度插值的方法确定参数参考值;确定参数阈值;生成残差;通过对比残差与阈值来判断电池是否发生故障。该方法不仅故障诊断率高,还能避免检测不及时、误警和漏警问题。
-
-
-
-
-
-
-
-
-