基于扫描电子显微镜的纳米线宽自适应测量方法及系统

    公开(公告)号:CN113533785A

    公开(公告)日:2021-10-22

    申请号:CN202110829985.9

    申请日:2021-07-22

    Abstract: 本发明涉及一种基于扫描电子显微镜的纳米线宽自适应测量方法及系统。所述方法包括:利用扫描电子显微镜获取纳米线宽图像并提取其强度曲线;根据均值将强度曲线分解为多个子曲线;提取每个子曲线的特征向量,获得特征向量集合;采用k‑means算法对特征向量集合中的多个特征向量进行簇划分,获得只包含单个特征向量的簇;根据该簇确定线宽曲线;根据线宽曲线确定强度曲线基底的平均强度、线宽顶部强度以及中间线条宽度的强度;根据中间线条宽度的强度计算中间线宽宽度值。本发明方法及系统从自动化测量的角度出发,基于k‑means算法,通过曲线分解和特征提取,将线宽结构从强度曲线中自适应地识别出来,通过计算机实现了线宽的精确自动测量。

    一种椭偏测量初始入射角校准装置及方法

    公开(公告)号:CN113375573A

    公开(公告)日:2021-09-10

    申请号:CN202110795986.6

    申请日:2021-07-14

    Abstract: 本发明公开了一种椭偏测量初始入射角校准装置及方法,其中校准装置包括平移装置、第一俯仰调节装置、第二俯仰调节装置和中间调节装置。平移装置包括平移平台、CCD相机和远心镜头,远心镜头可拆卸式安装于CCD相机上,CCD相机在平移平台上平移;第一俯仰调节装置包括第一俯仰偏摆调节平台和安装于第一俯仰偏摆调节平台上的自准直仪;第二俯仰调节装置包括第二俯仰偏摆调节平台和安装于第二俯仰偏摆调节平台上的稳频激光器;中间调节装置包括位置调节平台和安装于位置调节平台上的五棱镜。相比于现有技术,本发明能够实现自准直仪光轴与CCD相机运动轴成90°,稳频激光器光轴与CCD相机运动轴成180°,从而完成椭偏测量初始90°入射角的校准。

    一种多维纳米位移装置
    33.
    发明公开

    公开(公告)号:CN111739830A

    公开(公告)日:2020-10-02

    申请号:CN202010719317.6

    申请日:2020-07-23

    Abstract: 本发明公开了一种多维纳米位移装置,包括固定框架、移动框架、移动台、第一驱动装置和第二驱动装置,移动框架套在移动台外周并与移动台形成柔性连接,且移动框架内壁与移动台外壁之间有间隙,固定框架套在移动框架外周并与移动框架形成柔性连接,固定框架内壁与移动框架外壁之间有间隙,移动台中部用于放置待测样品,固定框架的一侧框上固定设有至少两个第一驱动装置,第一驱动装置驱动移动框架和移动台往复移动,移动框架的一侧框上固定设有至少一个第二驱动装置,第二驱动装置驱动移动台往复移动,第一驱动装置的驱动方向与第二驱动装置的驱动方向垂直,该多维纳米位移装置能够提高重载大行程的纳米位移精度,以及修正运动过程中的偏摆。

    扫描探针
    34.
    发明公开

    公开(公告)号:CN110967528A

    公开(公告)日:2020-04-07

    申请号:CN201811166846.7

    申请日:2018-09-30

    Abstract: 本申请涉及一种扫描探针。所述扫描探针包括第一延伸体、第二延伸体和第三延伸体。所述第一延伸体、所述第二延伸体和所述第三延伸体依次连接。所述第一延伸体的横截面积、所述第二延伸体的横截面积和所述第三延伸体的横截面积依次减小。所述第一延伸体、所述第二延伸体和所述第三延伸体依次连接,且所述第一延伸体的横截面积、所述第二延伸体的横截面积和所述第三延伸体的横截面积依次减小可以通过结构的几何级联获得纳米级联场增强。

    扫描探针
    35.
    发明公开

    公开(公告)号:CN110967525A

    公开(公告)日:2020-04-07

    申请号:CN201811161514.X

    申请日:2018-09-30

    Abstract: 本申请涉及一种扫描探针,所述扫描探针包括探针主体,延伸体和弯钩部。所述延伸体设置于探针主体的一端。所述弯钩部,设置于所述延伸体远离所述探针主体的一端。所述弯钩部可以增加散射截面,进而提高拉曼散射。

    用于共聚焦显微镜探测针孔的纳米级微位移调节装置

    公开(公告)号:CN110208936A

    公开(公告)日:2019-09-06

    申请号:CN201910468723.7

    申请日:2019-05-31

    Abstract: 本发明公开一种用于共聚焦显微镜探测针孔的纳米级微位移调节装置,由设置在下基座上的驱动器支撑上基座并对其进行快速、大行程的一级调节,由安装在上基座上的三维精密微位移平台对针孔盘进行三维方向的精密二级调节,通过上述双级调节可有效消除传统手动调节方式所带来的不确定性和不稳定性,以及现有光路调整机构可调行程小和应用范围受限的缺陷,并且上述一级大行程快速调节部分和二级精密微调部分可单独使用,以应用于相应需求场合。本发明通过控制器控制其进行纳米微位移调节,可使装置在工作过程中运行稳定、重复性好,从而使调节精度得到保障,实用性强。

    纳米颗粒粒径测量系统
    37.
    发明公开

    公开(公告)号:CN108287126A

    公开(公告)日:2018-07-17

    申请号:CN201810243972.1

    申请日:2018-03-23

    Abstract: 本申请提供一种纳米颗粒粒径测量系统,激光光源将激光从入射装置中发出,入射光通过入射光通孔射入散射发生装置。散射发生装置设置有多个入射光通孔与多个出射光通孔。多个入射光通孔与多个所述出射光通孔设置于同一水平面。每个信号探测接收器对应一个所述出射光通孔,用于接收出射光通孔发出的出射光。纳米颗粒粒径测量系统在多个角度上对待测纳米颗粒的同一散射中心进行同时测量,能获得散射中心纳米颗粒的更多有效信息,尤其对于双峰分布的颗粒体系,测量更加准确。此外,纳米颗粒粒径测量系统内设置有偏振光路,通过测量偏振入射光经过散射体后偏振方向的改变,实现对棒状纳米颗粒的长径比的测量求解。

    一种基于自组装材料图案化微纳关键尺寸及其制备方法

    公开(公告)号:CN117430079B

    公开(公告)日:2024-06-25

    申请号:CN202311464577.3

    申请日:2023-11-07

    Abstract: 本发明公开了一种基于自组装材料图案化微纳关键尺寸及其制备方法,硫醇SAM制备条件简单、结构稳定有序,在表面改性、电化学、生物传感器、分子电子学等诸多领域均有应用,且研究较为深入,本发明也因其稳定有序的结构特点,将其作为自组装单层物质的制备材料,硫醇分子由巯基、碳链、官能团组成,以正烷硫醇为例,官能团为甲基,使其具有疏水性;巯基对衬底产生吸附作用,在自组装过程中最为重要;碳链的长度决定了最终形成的SAM层的厚度,碳原子成“之”字形排列,形成全反式构象,使其具有热力学稳定性,且链之间的相互吸引力有助于稳定自组装膜结构,所制备的自组装材料具有均匀性和稳定性好的特点。

    纳米颗粒粒径测量系统
    39.
    发明授权

    公开(公告)号:CN110455690B

    公开(公告)日:2024-06-11

    申请号:CN201910773638.1

    申请日:2019-08-21

    Abstract: 本申请提供一种纳米颗粒粒径测量系统。在匹配液中放置有第一光阻断结构和第二光阻断结构。第一光阻断结构设置于入射光束正向延长线上,用以吸收和反射光束,使其无法到达匹配池壁面与空气交界处发生反射。第二光阻断结构设置于多个散射光通孔接收的散射光束的反向延长线上,用于吸收和反射测量接收角互补角上的散射光束,使其无法到达匹配池壁面与空气交界处发生反射。通过匹配液、第一光阻断结构以及第二光阻断结构可以极大程度上减少传统纳米颗粒粒径测量系统中样品池壁面反射光的影响,并避免多个散射光通孔接收自身角度的散射光信号中混入反射光信息,从而大幅提高了测量结果的准确性。

    微腔克尔孤子的生成系统及方法
    40.
    发明公开

    公开(公告)号:CN117498141A

    公开(公告)日:2024-02-02

    申请号:CN202311322279.0

    申请日:2023-10-12

    Abstract: 本发明涉及一种生成微腔克尔孤子的生成系统及方法,该系统包括主激光器出射主激光;主光路处理模块对主激光进行光学处理并输入主激光分光耦合器;主激光分光耦合器分光主激光将分光后的部分主激光输入微环谐振模块;辅助激光器用于出射辅助激光;辅助光路处理模块对辅助激光进行光学处理并输入辅助激光分光模块;辅助激光分光模块基于目标次数对辅助激光进行分光,获得微环谐振辅助激光并将微环谐振辅助激光输入微环谐振模块;微环谐振模块接收分光后的部分主激光和微环谐振辅助激光,生成微腔克尔孤子;监测模块用于监测并获取主激光、辅助激光和微腔克尔孤子的光学数据,调谐操作简单,调谐方便。

Patent Agency Ranking