半导体量子阱中载流子浓度的测量方法

    公开(公告)号:CN102830260B

    公开(公告)日:2015-01-07

    申请号:CN201210275822.1

    申请日:2012-08-03

    Abstract: 本发明公开了一种获取半导体量子阱中载流子浓度的方法,包括步骤:使用扫描探针显微镜的电学检测模式测量半导体量子阱横截面的局域电导分布;建立反映导电探针-量子阱肖特基接触电导和量子阱中载流子浓度关系的数值模型;根据测得的电导分布确定数值模型的参数和量子阱载流子浓度。该方法的空间分辨高,在分析窄量子阱以及耦合量子阱时具有优势;并且适用于从非简并到简并掺杂条件较宽的载流子浓度范围。该方法对于以量子阱为功能结构的半导体光电器件内在性能分析有重要价值。

    红外焦平面探测器离子注入区陷阱浓度数据的提取方法

    公开(公告)号:CN102928194A

    公开(公告)日:2013-02-13

    申请号:CN201210405502.3

    申请日:2012-10-22

    Abstract: 本发明公开了一种红外焦平面探测器离子注入区陷阱浓度数据的提取方法。它是基于激光辐照在碲镉汞材料上产生光生载流子,载流子扩散至离子注入n区、汞填隙扩散区和p吸收区形成的pn结处被结电场分开形成光电流信号的原理,对pn结光敏元阵列进行一维线性扫描,获得不同温度条件下电流和位置的关系曲线。曲线具有两对光电流峰,曲线的峰间间距代表了光敏元的结区宽度和pn的位置。结合数值模拟,提取获得不同温度下的离子注入区的有效陷阱浓度。本发明对长波碲镉汞红外探测器离子注入区材料优劣的判断具有非常重要的意义。

    半导体量子阱中载流子浓度的测量方法

    公开(公告)号:CN102830260A

    公开(公告)日:2012-12-19

    申请号:CN201210275822.1

    申请日:2012-08-03

    Abstract: 本发明公开了一种获取半导体量子阱中载流子浓度的方法,包括步骤:使用扫描探针显微镜的电学检测模式测量半导体量子阱横截面的局域电导分布;建立反映导电探针-量子阱肖特基接触电导和量子阱中载流子浓度关系的数值模型;根据测得的电导分布确定数值模型的参数和量子阱载流子浓度。该方法的空间分辨高,在分析窄量子阱以及耦合量子阱时具有优势;并且适用于从非简并到简并掺杂条件较宽的载流子浓度范围。该方法对于以量子阱为功能结构的半导体光电器件内在性能分析有重要价值。

    碲镉汞材料光学激活深能级上载流子弛豫时间的检测方法

    公开(公告)号:CN101706428B

    公开(公告)日:2012-06-27

    申请号:CN200910198964.0

    申请日:2009-11-18

    Abstract: 本发明公开了一种用脉冲激光泵浦-探测实验检测碲镉汞薄膜材料光学激活深能级上载流子弛豫时间的方法。在对碲镉汞薄膜材料的脉冲激光泵浦-探测实验中,由泵浦光脉冲激发的光生载流子首先被深能级俘获,之后通过复合逐渐恢复到平衡态。在此过程中深能级上部分载流子会被探测光脉冲重新激发进入导带,导致探测光子被大量吸收,使探测光透射强度小于不加泵浦光时的透射强度,造成在相对透射强度的延时变化曲线中出现一个数值为负的吸收谷。这种负的相对透射率随时间逐渐恢复到接近于零的平衡态时的情形,其恢复的时间过程反映出深能级上载流子浓度的变化,体现出深能级上非平衡载流子的弛豫时间。通过理论拟合能够提取出该弛豫时间的数值。

    一种激光选择聚焦器件及其设计方法

    公开(公告)号:CN101846808A

    公开(公告)日:2010-09-29

    申请号:CN201010177518.4

    申请日:2010-05-14

    Abstract: 本发明公开了一种激光选择聚焦器件及其设计方法,激光选择聚焦器件是将具有聚焦功能的激光选择性透镜与普通的光电探测器集成在一起。其中的激光选择性透镜是按照菲涅尔波带片原理蒸镀金属的明暗环制作而成,可以承载在载玻片上,外置于光电探测器外,也可以直接蒸镀在普通的光电探测器的衬底上。该结构器件不仅能够显著削弱激光通信中接收信号的背景噪声,直接提取激光信号并对激光信号进行聚焦,同时能够扩大探测器件的有效光敏面积,提高系统的信噪比。同时,器件的制备也比较简单、易于操作。

    一种检测多量子阱发光二极管内部量子点密度的方法

    公开(公告)号:CN101109724B

    公开(公告)日:2010-05-19

    申请号:CN200710044935.X

    申请日:2007-08-16

    Abstract: 本发明提供一种检测InGaN/GaN多量子阱发光二极管内部量子点密度大小的方法。由于InGaN/GaN多量子阱发光二极管为InGaN量子点发光,那么,其内部量子点密度的大小就决定了其发光性能的优劣。本发明根据InGaN/GaN多量子阱发光二极管开启电压随其内部量子点密度增大而逐渐增大的变化关系,通过测量其开启电压的大小来判定其内部量子点密度的大小。在保证电极为欧姆接触的情况下,发光二极管的开启电压越大,其内部量子点密度也就越高。本发明可以简单方便的确定InGaN/GaN多量子阱发光二极管内部量子点密度的相对大小,而且不会造成浪费,对于寻找最优化的生长条件,提高发光二极管的发光效率和节约成本具有重要意义。

Patent Agency Ranking