一种基于同期卫星影像的多架次无人机影像相对辐射校正方法

    公开(公告)号:CN112884672A

    公开(公告)日:2021-06-01

    申请号:CN202110242020.X

    申请日:2021-03-04

    Abstract: 本发明提出了一种基于同期卫星影像的多架次无人机影像相对辐射校正方法,包括以下步骤:对于多架次的无人机影像,首先获取同时期的中高空间分辨率卫星影像并进行预处理,得到相同区域的无人机和卫星影像;然后基于重采样无人机影像和卫星影像的光谱反射率,以回归树的方式将训练数据集分割为多个子集并开发回归模型;最后将多子集多元回归模型应用到无人机影像生成参考影像,并应用最小二乘回归建立各波段的辐射校正模型,从而获得相对辐射校正后的无人机影像。本发明构建的多架次无人机影像相对辐射校正方法操作步骤简单、高效,并且可实现自动化,可用于遥感影像拼接和遥感信息提取,以及基于无人机和卫星遥感协同的作物生长监测等。

    一种基于无人机多光谱影像的水稻地上部生物量估测方法

    公开(公告)号:CN109459392A

    公开(公告)日:2019-03-12

    申请号:CN201811312158.7

    申请日:2018-11-06

    CPC classification number: G01N21/25 G01N21/84 G01N2021/8466

    Abstract: 本发明提出一种基于无人机多光谱影像的水稻地上部生物量估测方法,步骤如下:规范采集水稻冠层无人机多光谱影像数据和地面实测生物量数据;获取后进行影像预处理,提取反射率和纹理特征参数,计算植被指数,并构建新的纹理指数;利用逐步多元回归分析法,综合植被指数和纹理指数估测水稻生物量,并以此建立估测生物量的多元线性模型。采用交叉验证方法对该新估测模型进行精度验证。本发明的方法估测精度高、对输入数据要求少,适用于水稻全生育期,同时也是目前第一次提出综合无人机光谱和纹理信息估测水稻生物量的方法,可广泛用于无人机遥感监测作物长势。

    基于高光谱影像融合图谱特征的小麦叶层氮含量估测方法

    公开(公告)号:CN112557393B

    公开(公告)日:2024-02-20

    申请号:CN202011303981.9

    申请日:2020-11-19

    Abstract: 本发明提出基于高光谱影像融合图谱特征的小麦叶层氮含量估测方法,步骤包括:采集小麦冠层高光谱影像数据和实测小麦叶层氮含量;首先,进行影像预处理,提取光谱反射率,计算植被指数、位置和形状特征,利用卷积神经网络提取深层特征。其次,通过相关系数分析、随机森林算法进行特征优选,利用并行融合策略构建新的融合图谱特征。最后,利用粒子群优化支持向量回归方法,构建基于融合图谱特征的小麦叶层氮含量估测模型。本发明的方法估测精度高、特征鲁棒性强,适用于小麦全生育期,同时也是目前第一次提出综合高光谱影像的植被指数、位置和形状特征、深层特征构建融合图谱特征估测小麦叶层氮含量的方法。

    U型自适应EST的无人机遥感图像分割方法及系统

    公开(公告)号:CN115035131A

    公开(公告)日:2022-09-09

    申请号:CN202210434654.X

    申请日:2022-04-24

    Abstract: 一种U型自适应EST的无人机遥感图像分割方法及系统,该系统包括特征提取单元、特征编码器、跳跃连接模块、卷积解码模块和投影模块;所述的特征编码器包括多阶EST和对应的自适应图像块合并层;其中:每阶EST分别包括若干个由第一EST模块和第二EST模块组成的EST单元,每个EST模块均包括归一化层LN、增强多头自注意力模块、残差连接层以及多层感知机MLP。本发明基于CNN和Transformer模块,通过层次结构实现全局自关注,在解码器中,结合卷积和反卷积块实现上采样,上采样恢复编码器的信息,进行相应的像素级分割,能够减少直接在原图上进行图像块导致的边缘和位置信息的丢失。

Patent Agency Ranking