-
公开(公告)号:CN101832772A
公开(公告)日:2010-09-15
申请号:CN201010188477.9
申请日:2010-06-01
Applicant: 郑州辰维科技有限公司 , 北京控制工程研究所
Abstract: 本发明涉及月球车避障系统激光点阵器标定方法,可有效解决对激光点阵器内的18条激光束和激光点阵器基准镜坐标系的关系,以及避障相机基准镜坐标系之间的关系精确标定的问题,方法是,用相机对激光点拍照;对图像进行处理,得到像点坐标;利用相机的内参数进行三角测量,得到三维坐标;利用处理过的照片得到激光点在双相机摄影测量系统下三维坐标;建立双相机和支架上标志点和坐标系之间关系及激光点在支架标志点坐标系下坐标和经纬仪坐标系;确立经纬仪坐标系和支架上标志点坐标系关系及经纬仪坐标和点阵器基准镜坐标系关系;再建立激光点在经纬仪坐标系下坐标及基准镜坐标系下坐标,本发明标定速度快,精度高,有效用于技术数字摄影测量、计算机视觉等领域。
-
公开(公告)号:CN101236091B
公开(公告)日:2010-06-30
申请号:CN200810057351.0
申请日:2008-01-31
Applicant: 北京控制工程研究所
Abstract: 本发明公开一种可见光导航敏感器,所述的可见光导航敏感器采用宽窄差异的可见光谱段和双通道的光学系统对不同目标成像到同一光电探测器靶面各自独立区域,所述的光学系统分为两个独立视场通道分别对近星体、恒星进行成像;光电探测器将近星体、恒星图像转换成模拟信号输出;电路系统对所述的模拟信号进行处理及转换后得到数字图像;最后图像与姿态计算单元分别对近星体图像信息与恒星图像信息进行处理,并计算得到卫星导航需要的近星体中心矢量、轨道高度与惯性姿态。本发明利用宽窄可见光谱段、分视场、分成像区域技术解决了光学敏感器对近星体、恒星在同一靶面上的同时成像问题。此外,本方明具有正常成像模式和binning成像模式。
-
公开(公告)号:CN101231753A
公开(公告)日:2008-07-30
申请号:CN200810057338.5
申请日:2008-01-31
Applicant: 北京控制工程研究所
Abstract: 紫外月球敏感器强杂光判读方法,包括下列步骤:(1)确定紫外月球敏感器所摄图像强杂光判断的靶面分析区域;(2)对所述分析区域内的像素进行横向搜索,若出现连续两个像素大于亮像素阈值,则停止搜索并转步骤(3),否则继续搜索;(3)对步骤(2)中像素大于强光阈值的两个像素点中的任意一个像素开始纵向搜索并统计搜索中连续像素大于所述亮像素阈值的个数,当统计的个数大于数目阈值时,代表图像中存在强杂光,停止搜索;否则,对另一个像素点进行纵向搜索并统计搜索中连续像素大于所述亮像素阈值的个数,当统计的个数大于数目阈值时,代表图像中存在强杂光,停止搜索;否则从步骤(2)继续搜索,直至分析区域全部搜索完毕。
-
公开(公告)号:CN106767540B
公开(公告)日:2019-03-12
申请号:CN201611180134.1
申请日:2016-12-19
Applicant: 北京控制工程研究所
Abstract: 一种交会测量相机光轴与反射镜夹角误差标定方法,首先将交会测量相机、标定靶标分别安装在两个平动三轴转台上,标定得到相机内外参数标定矩阵,建立相机光轴与反射镜误差模型,确定误差标定的反射镜指向在相机测量坐标系中的方向余弦参数,然后建立标定靶标基准立方镜坐标系,计算得到相机基准立方镜坐标系、相机测量坐标系与标定靶标基准立方镜坐标系的坐标转换矩阵,最后控制转台运动,得到标定靶标位置姿态、交会测量相机测量坐标系经反射镜镜像后的坐标系相对标定靶标基准立方镜坐标系的坐标转换矩阵,进而得到反射镜指向在交会测量相机测量坐标系中的方向余弦参数。本发明完成了量相机光轴与反射镜夹角的误差标定,具有较好的使用价值。
-
公开(公告)号:CN109437599A
公开(公告)日:2019-03-08
申请号:CN201811512396.2
申请日:2018-12-11
Applicant: 北京控制工程研究所
Inventor: 龚德铸 , 唐黎 , 钟俊 , 孙建波 , 张慧锋 , 赵人杰 , 孟宪刚 , 张佳星 , 刘启海 , 华宝成 , 卢纯青 , 赵春晖 , 王世新 , 郑岩 , 袁琦 , 邹月 , 张成龙 , 韩强
Abstract: 本发明公开了一种交会对接敏感器用超高精度反射镜一体式加工方法,所述方法包括如下步骤:步骤一:对反射镜支架加工,并进行相关应力释放;步骤二:对金属反射镜加工,并进行相关应力释放;步骤三:将反射镜和反射镜支架进行微应力装配,形成反射镜组件,并进行组件应力释放和深度清洁;步骤四:对反射镜组件进行离子束建模;步骤五:根据步骤四中的离子束建模,对反射镜组件开展非接触式离子束抛光,获得超高精度反射镜组件;步骤六:对步骤五中的超高精度反射镜组件进行光学镀膜。本发明解决了超高精度反射镜组件,高精度高稳定性与小型化轻量化的矛盾,使得反射镜组件始终保持高精度面形和高稳定性。
-
公开(公告)号:CN106767540A
公开(公告)日:2017-05-31
申请号:CN201611180134.1
申请日:2016-12-19
Applicant: 北京控制工程研究所
CPC classification number: G01B11/26 , G01B11/002
Abstract: 一种交会测量相机光轴与反射镜夹角误差标定方法,首先将交会测量相机、标定靶标分别安装在两个平动三轴转台上,标定得到相机内外参数标定矩阵,建立相机光轴与反射镜误差模型,确定误差标定的反射镜指向在相机测量坐标系中的方向余弦参数,然后建立标定靶标基准立方镜坐标系,计算得到相机基准立方镜坐标系、相机测量坐标系与标定靶标基准立方镜坐标系的坐标转换矩阵,最后控制转台运动,得到标定靶标位置姿态、交会测量相机测量坐标系经反射镜镜像后的坐标系相对标定靶标基准立方镜坐标系的坐标转换矩阵,进而得到反射镜指向在交会测量相机测量坐标系中的方向余弦参数。本发明完成了量相机光轴与反射镜夹角的误差标定,具有较好的使用价值。
-
公开(公告)号:CN102175226B
公开(公告)日:2013-03-13
申请号:CN201010623832.0
申请日:2010-12-31
Applicant: 北京控制工程研究所
IPC: G01C11/04
Abstract: 基于显著性特征的目标识别方法是应用于合作目标光学成像敏感器,在有复杂杂光背景下根据合作目标的特征将其有效、快速地识别出来的方法。本方法根据合作目标的布局具备典型的几何形状,以及整个交会对接过程中合作目标与光学成像敏感器之间的相对位置姿态变化范围,计算得到合作目标成像后的几何形状特征以及几何特征变化范围。将几何特征归纳为线段长度、直线斜率、直线夹角、直线间平行关系、直线间长度的比例关系等便于工程化实现的方式,同时根据合作目标的一致性进行分组匹配减少识别计算的运算量。本方法充分考虑了目标故障的情况,能够在2个目标同时发生故障的情况下完成识别。
-
公开(公告)号:CN102095099A
公开(公告)日:2011-06-15
申请号:CN201010611654.X
申请日:2010-12-17
Applicant: 北京控制工程研究所
Abstract: 本发明公开了一种交会对接远场标志灯,包括两个激光器、由透镜组和自聚焦透镜阵列组成的光学系统以及防辐照玻璃。本发明采用双光纤热备份作为标志灯的光路传输路径,从而提高了标志灯的工作可靠性;采用无焦平面两片透镜组成透镜组,并且不改变高斯光束性质,减少了光学系统复杂度,降低了系统的透过率,减轻了重量;利用自聚焦透镜阵列作为远场标志灯匀化器,解决了光匀化问题。本发明通过了鉴定级空间环境试验,即紫外辐照、原子氧辐照试验、带电粒子辐照试验和非金属材料质损可凝挥发物测试,与同类产品相比,具有体积小,重量轻的优点。
-
公开(公告)号:CN101236092B
公开(公告)日:2010-06-02
申请号:CN200810057352.5
申请日:2008-01-31
Applicant: 北京控制工程研究所
Abstract: 本发明公开一种紫外导航敏感器,所述的紫外导航敏感器采用具有两个谱段的光学系统对不同目标成像到同一光电探测器靶面各自独立区域,同时分为两个独立视场通道分别对地球、恒星进行成像;光电探测器将地球、恒星图像转换成模拟信号输出;电路系统对所述的模拟信号进行采样、提取及转换后得到数字图像;最后图像与姿态计算单元分别对紫外地球信息与可见光恒星信息进行处理,并计算得到卫星导航需要的地心矢量、轨道高度与惯性姿态。本发明利用分谱段、分视场、分成像区域技术解决了光学敏感器对地球、恒星在同一靶面上的同时成像问题。此外,本方明具有正常成像模式和binning成像模式,增强了系统探测灵敏度,提高了数据更新率。
-
公开(公告)号:CN101713655A
公开(公告)日:2010-05-26
申请号:CN200910238146.9
申请日:2009-11-16
Applicant: 北京控制工程研究所
Abstract: 一种紫外导航敏感器的双模式控制方法,当星上计算机判断出紫外导航敏感器在连续多个周期内提取的星点数目低于事先设好的星点数目阈值时,星上计算机向紫外导航敏感器发送模式设置指令,将紫外导航敏感器的工作模式由正常工作模式转成binning工作模式,紫外导航敏感器上的信息处理算法转成binning工作模式下的信息处理算法,当紫外导航敏感器提取的星点高于事先设好的星点数目阈值的3倍时,星上计算机将紫外导航敏感器由binning工作模式转成正常工作模式。在Binning工作模式下紫外导航敏感器可探测的星等提高了1个等级、运算速度提高了1倍以上,提高了图像的信噪比和敏感器的感光能力,拓宽了紫外导航敏感器的工作能力。
-
-
-
-
-
-
-
-
-