-
公开(公告)号:CN118657791A
公开(公告)日:2024-09-17
申请号:CN202410967844.7
申请日:2024-07-18
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明涉及一种基于深度学习的疾病图像分割方法,包括:模型编码器的Stem部分对输入图像进行处理,在Stem后串联四个Mixed Layer,四个Mixed Layer依次对图像进行处理,且每个Mixed Layer将处理后的数据输入到下一个Mixed Layer;模型解码器通过五个Decoder Block串联组成,每个Decoder Block通过一个双线性上采样层和两个卷积层组成,前四个Decoder Block在通道维度连接来自跳跃连接的编码器潜层细节特征,并通过最后一个Decoder Block输出最终分割结果。本发明兼顾低计算成本、提取CT数据z轴特征的能力以及优越的分割性能。
-
公开(公告)号:CN118644711A
公开(公告)日:2024-09-13
申请号:CN202410688383.X
申请日:2024-05-30
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/764 , G16H30/00 , G06T7/00 , G06V10/80 , G16H50/20 , G06N3/0464 , G06N3/084 , G06N3/0895
Abstract: 本发明公开了一种适用于对肝内胆管癌分化程度进行预测的方法,通过引入了一种名为SiameseNet的双分支深度神经网络,采用多实例学习来减轻肿瘤异质性导致的性能下降。本发明所提出的方法通过交叉注意力机制整合来自两种不同模态的图像信息,最终实现高性能的预测网络,曲线下面积和受试者工作特征曲线用于评估模型性能。本发明所提出的网络在测试队列中的准确度为86.0%,曲线下面积为86.2%,敏感性为84.6%,特异性为86.7%。该模型可帮助医生及时评估患者肿瘤分化程度,制定个性化诊疗方案。
-
公开(公告)号:CN118644710A
公开(公告)日:2024-09-13
申请号:CN202410688376.X
申请日:2024-05-30
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/764 , G06T7/00 , G06T3/4038 , G06F17/11 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种应用深度学习预测肝内胆管细胞癌分化程度的方法,引入一个将细粒度图像分类方法与课程学习方法相结合的预测肝内胆管癌分化程度的框架,名为FGCNet模型;该模型通过细粒度图像分类方法有效识别CT图像上肝内胆管癌分化程度的细微差异,通过课程学习方法加快训练速度并增强模型泛化能力。本发明提供的模型在测试数据集上的准确度为80.49%,灵敏度为81.25%,特异性为80%,曲线下面积为78.25%;该模型可以无创地评估肝内胆管癌细胞的分化程度,从而成为帮助医生制定肝内胆管癌治疗策略的潜在工具。
-
公开(公告)号:CN118429223A
公开(公告)日:2024-08-02
申请号:CN202410472054.1
申请日:2024-04-19
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明公开了一种低质量人脸图像的无监督增强方法和存储介质,属于图像增强技术领域,本申请通过构建构建增强模型,对人脸图像信息和光照状态进行解析,实现非均匀人脸图像的亮度增强,增强模型基于深度学习和神经网络技术,能够自动学习人脸图像的特征和增强方法,提高图像的质量,然后通过使用生成对抗网络模型构建判别模型,结合约束函数对增强模型的输出进行处理,以保持增强结果的真实细节和自然图像状态,并对增强结果进行有效的约束,本申请充分挖掘了图像中的人脸特征信息,并保持了自然曝光的人脸状态,使得低曝光区域的人脸信息接近自然状态,并更好地表达出清晰精细的特征纹理,从而有效提升了模型图像的重建性能。
-
公开(公告)号:CN116798628A
公开(公告)日:2023-09-22
申请号:CN202310794200.8
申请日:2023-06-30
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G16H50/30 , G06T7/00 , G06V10/774 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了基于深度学习方法的ICC病理分化程度预测方法,涉及计算机技术领域,包括S1获取训练数据集;S2训练数据集导入ResNet‑50网络,训练优化获得病理分化程度预测模型;S3获取待预测患者的待预测数据集;S5病理分化程度预测模型对待预测数据集进行预测分析,得到分析结果;S6根据所有的分析结果输出预测结果;通过对患者的CT图像进行分析,得到最后的预测结果作为预测患者的病理分化程度,区别于传统的组织学活检当时,本方法无需侵入患者身体,避免给患者带来生理上的痛苦,而且本方法可以获取病灶情况的时效性强,以便于指导术前治疗方案的制定,选择最佳的治疗方案,以达到最好的治疗效果;亦可以用于患者的预后,了解治疗的效果。
-
公开(公告)号:CN119400366A
公开(公告)日:2025-02-07
申请号:CN202411500354.2
申请日:2024-10-25
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G16H30/40 , G16H50/50 , G06N3/096 , G06T7/00 , G06V10/774 , G06V10/82 , G06V10/764
Abstract: 本发明涉及一种利用术前CT图像对转换疗法进行预测的方法,属于图像处理领域,包括:对数据进行预处理得到用于对深度学习模型进行训练的图像;在知识蒸馏的基础上加入多次模型迭代,并引入标签平滑、余弦动态学习率调整和模型噪声,得到对模型进行训练的渐进式蒸馏方法;按照设定比例划分的训练集和测试集对采用EfficientNet并加载ImageNet的模型进行多轮次训练和测试,并通过经过多轮次训练和测试后的最终模型进行预测,得到预测结果。本发明能够将原发性肿瘤的计算机断层扫描征象与人工智能相结合,预测胃癌晚期患者对转换疗法的反应,产生很好的诊断效果。
-
公开(公告)号:CN119152121A
公开(公告)日:2024-12-17
申请号:CN202411362684.X
申请日:2024-09-27
Applicant: 电子科技大学长三角研究院(衢州) , 衢州海易科技有限公司
IPC: G06T17/00 , G06T9/00 , G06N3/0464 , G06N3/0475 , G06N3/08
Abstract: 本发明公开了基于深度学习的单视图三维物体重建方法,涉及计算机视觉领域,包括S1、构建物体重建模型,物体重建模型包括图像编码器、生成器G和鉴别器D,图像编码器用于从单视图图像中提取高层次特征,并通过重参数化技巧将高层次特征转化为潜在向量;S2、获取训练数据集;S3、训练数据集导入物体重建模型,并对物体重建模型进行训练优化,获得优化后的物体重建模型;S4、获取待重建的数据;S5、利用优化后的物体重建模型对待重建的数据进行三维物体重建;采用先进的神经网络架构,生成对抗网络GAN和图像编码器VAE,并在GAN网络中添加空间注意力机制来挖掘单视图图像中的深层特征和空间关系,从而提升3D物体重建的精度和鲁棒性。
-
公开(公告)号:CN118379208B
公开(公告)日:2024-10-29
申请号:CN202410816691.6
申请日:2024-06-24
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明公开了一种基于混合损失函数扩散模型的增强CT图像生成方法及装置,该方法包括:采集CT图像数据及其配对的造影剂增强CT图像数据,并采用数据增强方法和面向数据的正则化方法对其进行预处理,以按比例划分为训练集、测试集和验证集;构建用于生成造影剂增强CT图像的扩散模型;使用训练集对扩散模型进行迭代训练,基于混合损失函数调整扩散模型的参数,以获取训练好的扩散模型;将测试集中的CT图像数据输入至训练好的扩散模型中,得到对应的造影剂增强CT图像数据。本发明能够生成清晰可靠的造影剂增强CT图像,能够更好地捕捉数据分布的特征,提高了对不同特征的感知能力,增强了合成图像的质量,提高了模型的泛化性。
-
公开(公告)号:CN117174301A
公开(公告)日:2023-12-05
申请号:CN202310569396.0
申请日:2023-05-19
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明公开了基于深度学习的术中肺恶性肿瘤热消融疗效预测的方法,其特征在于,包括获得热消融CT图像;在热消融CT图像上感兴趣区域及感兴趣区域图像;将持续获得的热消融CT图像批量转换为jpg格式的图像,将感兴趣区域图像与热消融图像相结合,得到高亮感兴趣区域的CT图像,收集多名患者的热消融CT图像和高亮感兴趣区域的CT图像,进行剪裁得到分割图像;将分割图像输入深度残差网络,得到输出特征;对输出特征使用归一化指数函数后,得到分类概率,根据分类概率得到肺癌热消融的预测结果;在测试平台上进行测试,最终得到训练完成的深度残差神经网络模型。将患者的病灶CT图像输入训练完成的深度残差神经网络模型后,得出肺癌热消融预测效果。
-
公开(公告)号:CN116664523A
公开(公告)日:2023-08-29
申请号:CN202310642810.6
申请日:2023-06-01
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06T7/00 , G06T7/11 , G06V10/774 , G06V10/82 , G06V10/764 , G16H50/20
Abstract: 本发明公开了基于深度学习构建肾透明细胞癌分级模型的方法,包括获取肾透明癌细胞患者的CT图像;CT图像进行切割,获得切割图像;对切割图像进行旋转生成操作并标注,基于RegNetY400MF、RegNetY800MF、SE‑ResNet50和ResNet101四类网络模型,以普通交叉熵为损失函数,使用旋转后的切割图像对四类网络模型进行预训练;在普通的交叉熵中加入噪声修正策略作为损失函数,对经过预训练的四类网络模型进行实际训练;实际训练完成后的四类网络模型基于输出概率最大的CT图像对患者的病理进行诊断,获得四类网络模型的表现AUC;以四类网络模型的表现AUC作为其权重,对患者的最终诊断进行加权计算,得到其最终诊断,本申请实现了更有效的模型集成,达到了更好的最终预测准确度。
-
-
-
-
-
-
-
-
-