-
公开(公告)号:CN116798628A
公开(公告)日:2023-09-22
申请号:CN202310794200.8
申请日:2023-06-30
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G16H50/30 , G06T7/00 , G06V10/774 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了基于深度学习方法的ICC病理分化程度预测方法,涉及计算机技术领域,包括S1获取训练数据集;S2训练数据集导入ResNet‑50网络,训练优化获得病理分化程度预测模型;S3获取待预测患者的待预测数据集;S5病理分化程度预测模型对待预测数据集进行预测分析,得到分析结果;S6根据所有的分析结果输出预测结果;通过对患者的CT图像进行分析,得到最后的预测结果作为预测患者的病理分化程度,区别于传统的组织学活检当时,本方法无需侵入患者身体,避免给患者带来生理上的痛苦,而且本方法可以获取病灶情况的时效性强,以便于指导术前治疗方案的制定,选择最佳的治疗方案,以达到最好的治疗效果;亦可以用于患者的预后,了解治疗的效果。