一种基于深度学习的疾病图像分割方法

    公开(公告)号:CN118657791A

    公开(公告)日:2024-09-17

    申请号:CN202410967844.7

    申请日:2024-07-18

    Abstract: 本发明涉及一种基于深度学习的疾病图像分割方法,包括:模型编码器的Stem部分对输入图像进行处理,在Stem后串联四个Mixed Layer,四个Mixed Layer依次对图像进行处理,且每个Mixed Layer将处理后的数据输入到下一个Mixed Layer;模型解码器通过五个Decoder Block串联组成,每个Decoder Block通过一个双线性上采样层和两个卷积层组成,前四个Decoder Block在通道维度连接来自跳跃连接的编码器潜层细节特征,并通过最后一个Decoder Block输出最终分割结果。本发明兼顾低计算成本、提取CT数据z轴特征的能力以及优越的分割性能。

Patent Agency Ranking