一种新型偏振非制冷红外焦平面探测器及其制备方法

    公开(公告)号:CN107128872B

    公开(公告)日:2018-09-18

    申请号:CN201710328761.3

    申请日:2017-05-11

    Abstract: 本发明涉及一种新型偏振非制冷红外焦平面探测器,包括半导体基座、金属反射层、绝缘介质层、支撑层、保护层、金属电极层、热敏层,所述保护层包括第一保护层和第二保护层,所述第二保护层设置所述热敏层上,所述第二保护层上设有偏振结构,所述偏振结构包括光栅支撑层和设置在所述光栅支撑层上金属光栅结构,采用微桥倒置,微桥下面没有支撑桥墩,结构不容易产生变形;采用了三层微桥结构,第一层为红外辐射吸收结构,第二层为热绝缘微桥结构,第三层为偏振结构,有效提升像素的填充系数及提高入射红外辐射的吸收效率;还涉及一种新型偏振非制冷红外焦平面探测器的制备方法,两层牺牲层可以连续进行蚀刻,晶圆表面非常平整。

    一种非制冷红外3D MEMS系统结构及其制作方法

    公开(公告)号:CN106219480A

    公开(公告)日:2016-12-14

    申请号:CN201610532815.3

    申请日:2016-07-07

    CPC classification number: B81B7/0006 B81B7/0009 B81C1/00095 B81C1/00476

    Abstract: 本发明涉及一种非制冷红外3D MEMS系统结构及其制作方法,涉及非制冷红外3D MEMS结构领域。目的在于采用新的MEMS结构后,解决了传统结构受像元尺寸的缩小无法解决器件平坦化的问题,以及解决了多层工艺导致金属互联困难的问题,并解决了器件像元缩小后,尽可能维持氧化钒的面积并减少了桥腿的热导,确保器件性能不降低的问题,并采用蜂窝状结构,增加了红外吸收因子。介质层中部设有凹槽,反射层位于介质层中部凹槽的上表面,反射层的上方依次为第一层牺牲层和第二层牺牲层,且所述第一层牺牲层位于介质层中部凹槽中。把第一层牺牲层结构埋在电路的介质中进行制作,有利于后面小尺寸线宽和小像元的制作。

    一种非制冷红外焦平面探测器及其制备方法

    公开(公告)号:CN109824008B

    公开(公告)日:2021-05-11

    申请号:CN201910126342.0

    申请日:2019-02-20

    Abstract: 本申请公开了一种非制冷红外焦平面探测器,包括基底层;位于所述基底层上表面的支撑层;位于所述支撑层背离所述基底层的表面的功能层,且所述功能层中的图形化热敏层的侧壁与所述功能层中的图形化电极层不接触;位于所述功能层背离所述支撑层的表面的钝化层。本申请中非制冷红外焦平面探测器,包括依次叠加的基底层、支撑层、功能层和钝化层,功能层中图形化热敏层的侧壁与功能层中的图形化电极层之间不产生接触,从而避免图形化热敏层两端接触孔直接相连造成图形化热敏层短路,提高非制冷红外焦平面探测器的良率和性能。此外,本申请还提供一种具有上述优点的非制冷红外焦平面探测器制备方法。

    一种非制冷红外探测器及其制备方法

    公开(公告)号:CN108917942B

    公开(公告)日:2020-09-11

    申请号:CN201811124163.5

    申请日:2018-09-26

    Abstract: 本发明公开了一种非制冷红外探测器,其中用于将红外探测层中的热敏薄膜层与读出电路电连接的锚点为实心锚点。相比于现有技术中的空心锚点,实心锚点可以有效增加锚点的结构强度以及减小热敏薄膜层与读出电路之间的接触电阻,从而在保证一定的结构强度以及热敏薄膜层与读出电路之间一定的接触电阻的条件下,可以有效减小锚点的体积,从而便于非制冷红外探测器的小型化。本发明还提供了一种非制冷红外探测器的制备方法,所制备而成的非制冷红外探测器同样具有上述有益效果。

    一种非制冷双色红外探测器MEMS芯片及其制造方法

    公开(公告)号:CN107117578B

    公开(公告)日:2019-01-29

    申请号:CN201710328749.2

    申请日:2017-05-11

    Abstract: 本发明涉及一种非制冷双色红外探测器MEMS芯片,分为呈矩阵排列的四个区域:第一、三区域和第二、四区域,第一、三区域和第二、四区域形成高度不同的谐振腔,且其上溅射方阻值不同的热敏层薄膜,能够更好地吸收不同波段的红外能量,然后转换成电学信号进行处理进行图像输出。本发明还涉及一种制备上述芯片的方法,包括在第一、三区域和第二、四区域分别制作不同高度的谐振腔的步骤、分别溅射不同方阻值热敏层薄膜的步骤及封装测试的步骤,所述芯片能够在超低温(‑80℃~‑60℃)环境下工作和超高温(85℃~100℃)环境下工作。

    一种非制冷红外焦平面探测器像素结构及其制备方法

    公开(公告)号:CN106800271B

    公开(公告)日:2018-06-26

    申请号:CN201710053126.9

    申请日:2017-01-24

    Abstract: 本发明涉及一种非制冷红外焦平面探测器像素结构制备方法,在包含读出电路半导体基座上制作金属层;在完成图形化金属层上沉积绝缘介质层;在绝缘介质层上依次沉积第一牺牲层、第一支撑层、热敏层和第一保护层,光刻第一支撑层和第一保护层直至接触第一牺牲层,第一保护层上沉积第二牺牲层,并在完成图形化处理的第一牺牲层和第二牺牲层上沉积第二支撑层;在沉积完的第二支撑层的半导体基座上通过光刻和蚀刻的方法刻通孔;光刻或蚀刻第二支撑层和第一保护层以得到接触孔,接触孔光刻和蚀刻终止于热敏层;接触孔内和第二支撑层上沉积金属电极层,在金属电极图形上沉积第二保护层,利用光刻图形化第二保护层和第二支撑层,最后,进行结构释放。

    一种双层非制冷红外探测器结构及其制备方法

    公开(公告)号:CN106672891A

    公开(公告)日:2017-05-17

    申请号:CN201710053127.3

    申请日:2017-01-24

    CPC classification number: B81B7/0009 B81B7/02 B81C1/00476 G01J5/20

    Abstract: 本发明涉及一种双层非制冷红外探测器结构及其制备方法,所述探测器包括一包含读出电路的半导体基座和一带微桥支撑结构的探测器,所述半导体基座的读出电路与所述探测器电连接,所述探测器包括绝缘介质层、金属反射层、第一支撑层、金属电极层、第一保护层、第二支撑层、电极金属层、热敏层和第二保护层,所述电极金属层上设有热敏层,所述热敏层不能完全覆盖电极金属层,所述热敏层通过所述电极金属层与所述金属电极层电连接;制备时,先沉积电极金属层,再沉积热敏薄膜氧化钒,电极金属层之上覆盖着一层热敏薄膜氧化钒,使其对红外辐射的反射率大大降低,提高了探测器的红外吸收效率。

Patent Agency Ranking