侧风下列车气动性能与动力学性能协同测试方法及系统

    公开(公告)号:CN113701986A

    公开(公告)日:2021-11-26

    申请号:CN202110980725.1

    申请日:2021-08-25

    Applicant: 中南大学

    Abstract: 本发明公开了侧风下列车气动性能与动力学性能协同测试方法及系统,通过将待测试的列车表面划分为多个矩形单元;获取所述多个矩形单元实际的压力方向以及压差;对于任一个矩形单元A,所述矩阵单元A的压差是指与其在列车的横向或垂向相对的矩形单元B之间的压差;并根据所述多个矩形单元实际的压力方向以及压差计算所述列车的气动荷载,进而修正现有的气动荷载测量方法未考虑矩形单元实际方向带来的误差,提高气动荷载测量的准确性;此外,本发明创新性地提出侧风下列车气动性能与动力学性能协同测试方法及系统,该系统结合气动性能测试结果、车辆横向加速度进行动力学性能测试,无需测力轮对测定轮轨间作用力,从而增大动力学性能测试的适用范围、缩短测试准备周期、降低测试成本。

    电缆接头组件
    132.
    发明公开

    公开(公告)号:CN112332362A

    公开(公告)日:2021-02-05

    申请号:CN202011166662.8

    申请日:2020-10-27

    Applicant: 中南大学

    Abstract: 本申请涉及电力施工技术领域,公开一种电缆接头组件,包括:电缆接头,限定出安装通道,电缆接头包括快速接头,快速接头设于安装通道的一端;电缆,位于安装通道内,电缆与快速接头相连接,电缆包括线芯和位于线芯外侧的抗拉层,抗拉层的一端与线芯相连接,抗拉层的另一端向背离快速接头的方向弯折形成弯折部;压紧件,与弯折部相配合,用于在背离快速接头的外力作用下将弯折部压设于压紧件与安装通道的内壁面之间。抗拉层能够持续作为主要的受力部分,避免线芯承受拉力或减小线芯承受的拉力,进而避免电缆被拉断。

    轨道交通线路异物入侵监测方法、系统及计算机存储介质

    公开(公告)号:CN112101233A

    公开(公告)日:2020-12-18

    申请号:CN202010975740.2

    申请日:2020-09-16

    Applicant: 中南大学

    Abstract: 本发明涉及智能监测技术领域,公开了一种轨道交通线路异物入侵监测方法、系统及计算机存储介质,以实现监测的智能性和精确性。本发明方法包括:确定入侵异物所在的区域;对所述区域进行放大,获取放大图像入侵异物所覆盖Y轴方向各像素点的数量及各像素点所对应的自标定系数矩阵,并获取放大图像入侵异物所覆盖X轴方向各像素点的数量;X轴方向与两轨公垂线方向一致;所述自标定系数矩阵以两轨互相平行为前提,根据过标定点的两轨公垂线与两轨直线的两交点之间的图像空间轨距与标准轨距之间的比值计算得出;根据所述自标定系数矩阵与入侵异物所覆盖X轴和Y轴方向各像素点的数量计算入侵异物的实际尺寸。

    一种高速列车动模型试验设备

    公开(公告)号:CN111766040A

    公开(公告)日:2020-10-13

    申请号:CN202010779655.9

    申请日:2020-08-05

    Applicant: 中南大学

    Abstract: 本发明公开了一种高速列车动模型试验设备,属于高速列车气动性能模拟试验技术领域。采用本发明在提高600km/h以上动模型试验可靠性的同时,可将试验频率从1天1次提升至1天3次以上。所述设备包括高压空气储罐,其与加速管道连通,沿连通处依次设有动力车、模型列车,加速管道下方设有轨道底板,其末端设有模型列车制动装置,动力车与模型列车车架接触;在加速管道内设置有至少一组动力车可调制动装置,其包括固定在加速管道外侧的油缸底板及安装在油缸底板上的调节油缸,油缸活塞杆从调节油缸中伸出、穿过加速管道侧壁与其内的制动板接触,一端固定在制动板上的拉杆穿过加速管道侧壁和回拉弹簧,另一端通过螺母固定在加速管道外侧。

    一种高速列车动模型试验平台

    公开(公告)号:CN111735606A

    公开(公告)日:2020-10-02

    申请号:CN202010780273.8

    申请日:2020-08-05

    Applicant: 中南大学

    Abstract: 本发明公开了一种高速列车动模型试验平台,属于高速列车气动性能模拟试验技术领域。采用本发明在600km/h以上超高速的情况下,可精确采集试验数据,同时避免模型列车和内部传感器试验过程中的损伤,使气动试验可反复进行。本发明包括高压空气储罐,其与上层管道连通,沿所述连通处依次设有动力车、模型列车,上层管道下方设有带槽的轨道底板,该轨道底板下方设有下层管道,上层管道内设有动力车制动装置,下层管道内有支撑起模型列车使其悬空的传动车和支撑车,并在下层管道末端设有传动车制动装置,从动力车底部延伸出的顶杆与所述传动车尾端接触。

    一种大风环境下风区铁路防风设施通用优化方法

    公开(公告)号:CN107386135B

    公开(公告)日:2020-06-05

    申请号:CN201710620943.8

    申请日:2017-07-27

    Abstract: 本发明公开了一种大风环境下风区铁路防风设施通用优化方法,主要适用于山梁靠近挡风墙的区域,包括步骤S1和步骤S2,其中,步骤S1为将靠近所述挡风墙的山梁的一部分挖掉,形成过渡区;步骤S2为将被挖掉一部分的所述山梁靠近挡风墙的面设置为与所述过渡区底面呈钝角的斜面,相比现有挡风墙的防风效果,采用通用优化方法后,能够有效减小远方来流的流场突变和风速增加,提高挡风墙的防风效果和风区铁路行车安全,使得列车可以按照行车标准正常行车,减少降速停车次数,提高运输效率。

    风机特性多点压力同步测量测试系统

    公开(公告)号:CN106370343B

    公开(公告)日:2019-04-30

    申请号:CN201610808014.5

    申请日:2016-09-07

    Applicant: 中南大学

    Abstract: 本发明公开了一种风机特性多点压力同步测量测试系统,包括微型全压管、支撑杆、测试管,微型全压管为外形呈直角状的毛细不锈钢管,支撑杆一侧管壁上开有槽,另一侧管壁上开有孔,根据中线性法或切贝切夫法确定测试管上测试横截面内的直径数量、位置和分布在各个直径上的测试点的数量、位置,微型全压管的一条直角边依次从各个所述孔中伸出,另一条直角边依次叠加固定在所述槽内,支撑杆两端固定在测试管的管壁上,在测试横截面所在的管壁上等分分布有四个静压孔,各个微型全压管伸出端的端部与四个静压孔位于同一测试横截面上;本发明的有益效果是:提高了测试效率,提高测试准确度,带有数据采集处理分析功能,实时显示测试数据。

    一种高速列车头部外形参数化方法

    公开(公告)号:CN108717489A

    公开(公告)日:2018-10-30

    申请号:CN201810475713.1

    申请日:2018-05-17

    Abstract: 本发明公开了一种高速列车头部外形设计领域的高速列车头部外形参数化方法,包括以下步骤:将构成现有高速列车车头几何外形的空间三维曲面按曲率、走向和延展趋势划分为若干区域,并得到将所述空间三维曲面划分为若干区域的若干型线,所述型线由直线段、圆弧和Ferguson曲线来表示;获取根据设计要求生成的高速列车头型控制参数,所述控制参数包括尺寸参数和变形参数,用尺寸参数构建出所述直线段和所述圆弧,并用Ferguson曲线将直线段和圆弧连接,形成通过尺寸参数约束的三次NURBS曲线作为控制型线,所述变形参数用来修改Ferguson曲线收尾端张度值;利用所述控制型线构建中间过程曲面,并通过中间过程曲面组合形成高速列车头部。

    列车车载风速风向仪
    139.
    发明公开

    公开(公告)号:CN105092889A

    公开(公告)日:2015-11-25

    申请号:CN201510527553.7

    申请日:2015-08-26

    Applicant: 中南大学

    Abstract: 本发明公开了一种列车车载风速风向仪,所述风速风向仪主要由测风装置、主机、GPS、控制面板和显示器组成;测风装置的外部主要由底座和顶盖构成筒体结构,底座的筒体上均布12个感压腔,感压腔内安装压力传感器;主机以中央处理器为核心,配置GPS接口,测风仪接口,存储单元、电源单元和对外接口;GPS与配置GPS接口电连接;测风装置与测风仪接口电连接;控制面板和显示器均与中央处理器连接。进一步,中央处理器配置温湿度接口,温湿度接口连接温湿度传感器。本发明结构简单合理,造价低廉,不仅能够获得大风对车辆的倾覆力,还能够获得轮轨的摩擦系数,指导安全的行车速度。

    风车路网墙地形耦合下列车运行安全阈值确定方法及系统

    公开(公告)号:CN103983462B

    公开(公告)日:2015-02-25

    申请号:CN201410227437.9

    申请日:2014-05-27

    Applicant: 中南大学

    Abstract: 本发明公开了一种风车路网墙地形耦合下列车运行安全阈值确定方法及系统,以解决目前以列车倾覆系数作为风区行车安全的唯一判据、不能综合考虑实际环境诸影响因素的问题。所述方法包括:首先确定路况-车型及载重-风速及风向-车速耦合状态下风速与车速的第一关系式、列车升重比临界状态下的临界风速与车速的第二关系式以及确定风致网偏导致弓网失效状态下的临界风速与车速的第三关系式,通过列车运行中的当前风速及三个关系式得出三个车速并进行比较,最小的车速即为当前风/车/路/网/墙/地形等因素耦合环境下的列车运行安全阈值。通过上述方式确定的列车运行的安全阈值,更接近列车运行的实际环境,对列车运行速度的选择更具有参考价值。

Patent Agency Ranking