-
公开(公告)号:CN109013717B
公开(公告)日:2019-10-25
申请号:CN201810951651.7
申请日:2018-08-21
Applicant: 东北大学
Abstract: 本发明提供一种热连轧中间坯心部温度计算方法,涉及轧钢自动控制技术领域。该方法根据粗轧区末轧制道次实际测量得到的轧制力速度、宽度和厚度计算得到轧件平均温度,通过空冷温降计算得到轧件在运输辊道上的温降损失,得到轧件的平均温度,再进一步结合轧件在中间辊道的任一位置的表面温度,即可以计算得到轧件的心部温度。本发明的方法安全可高,计算精度高,能够成功应用于热连轧机中间坯心部温度的计算过程,解决了实际过程中中间坯心部温度无法直接在线测量的问题,节约生产投资成本的同时,保证温度的计算精度,为成品厚度的在线精准控制提供了良好基础。
-
公开(公告)号:CN110180900A
公开(公告)日:2019-08-30
申请号:CN201910552424.1
申请日:2019-06-25
Applicant: 东北大学
IPC: B21B37/16
Abstract: 本发明提出一种厚规格窄带钢厚度控制方法,属于轧制自动控制技术领域,包括:采集PDI数据;计算轧件运行速度;计算轧件通过轧线特定位置的时间及对应的采样点数目;根据采样点数目确定轧件厚度的计算方式;计算轧件扭转造成的测量偏差;使用测量偏差补偿测厚仪的实测数据,得到补偿后的测厚仪的实测数据;使用补偿后的厚度测量值进行厚度控制,完成轧制过程。本发明在现有系统基础上,仅通过对数据分析和处理,即可以实现厚规格窄带钢的厚度测量,无须对现有控制系统进行修改,能够保证厚度的测量精度,安全可靠,为厚度自动控制系统的正常投用提供了良好的基础。
-
公开(公告)号:CN110116138A
公开(公告)日:2019-08-13
申请号:CN201910508641.0
申请日:2019-06-13
IPC: B21B38/00
Abstract: 本发明涉及一种轧制过程中热态钢板长度及侧弯测量方法,所述方法采用高速线阵相机,使用光栅信号触发拍摄钢板图像,应用图像处理算法进行边缘提取,通过对运动中的钢板的测量,依据边缘点、宽度中心线、带钢本体和扫描线扫描区域确定钢板长度及侧弯量的大小。本发明实现了对运动中轧制后热态钢板长度及侧弯量的在线测量,测量系统硬件配置简单,计算方法高效精确,可实时反应带钢的宽度信息,且避免的人工测量带来的误差;具有速度快,精度高的特点,能够快速准确的计算钢板长度及侧弯量。同时为钢板后续定尺提供了准确的数据,进而提高了钢板的产品质量,为后续剪切以及侧弯控制提供准确的数据。
-
公开(公告)号:CN106552831B
公开(公告)日:2019-07-12
申请号:CN201611064638.7
申请日:2016-11-28
Applicant: 东北大学
Abstract: 一种薄规格热轧带钢的制造方法,其特征在于一台单机单流的薄板坯连铸机直接与轧机相连,炼钢→连铸→摆式剪→推钢→除鳞→边部加热→粗轧机组→飞剪→无芯卷取→感应加热→除鳞→精轧机组→带钢冷却→剪切→卷取→卸卷→打捆→运卷→称重、标印→运输→存放。采用无头轧制工艺,或单坯轧制工艺。连铸机出口铸坯温度,较ESP生产线高出100~150℃,提高了连铸坯余热的利用率,降低了能耗;较ESP生产线,将摆式剪和推钢辊道迁移至粗轧机前,缩短粗轧后中间辊道的距离,减少中间坯温降,降低感应补热量,并可避免粗轧机轧辊产生热裂纹。粗轧机组入口配备除鳞装置,精轧机组采用在线热备技术和在线快速换辊技术,有效提高产品表面质量。
-
公开(公告)号:CN109190628A
公开(公告)日:2019-01-11
申请号:CN201810929853.1
申请日:2018-08-15
Applicant: 东北大学
Abstract: 本发明具体涉及一种基于机器视觉的板材镰刀弯检测方法,属于轧钢过程自动控制领域。本发明所述方法包括如下步骤:通过安装在轧机前、后的推床外的辊道正上方的面阵CCD摄像机,获得板材图像,并通过摄像机标定对图像进行畸变矫正;对矫正后的图像进行高斯低通频域滤波,并对滤波后的图像进行图像锐化微分运算,增强图像边界;对边界增强后的图像进行数学形态学变换以及阈值二值化处理,分割并完整提取板材图像;对阈值分割后的图像使用Canny边缘检测算子提取板材边缘轮廓点的像素坐标,同时结合改进的Zernike正交矩的亚像素边缘检测算法得到板材边缘的亚像素级坐标并进行拟合,得到镰刀弯值。
-
公开(公告)号:CN106694570B
公开(公告)日:2018-10-23
申请号:CN201611070559.7
申请日:2016-11-29
Applicant: 东北大学
IPC: B21B38/04
Abstract: 本发明提供一种热连轧精轧区机架轧后宽展量计算方法,包括:在热连轧精轧区生产过程中,实时检测轧件位置信号、精轧机各机架轧制力及精轧机辊缝位置;计算轧件通过精轧机相邻机架的平均运行速度和相邻测量仪表的平均运行速度;计算轧件头部通过粗轧机出口的平均宽度,计算轧件头部通过精轧机各机架和精轧机出口的平均厚度,计算轧件头部通过精轧机出口的平均宽度;计算精轧后轧件头部的秒流量;按照秒流量恒定原则计算精轧机各机架的出口宽度;计算得到精轧机各机架轧后的轧制宽展量。本发明根据秒流量恒定原则计算得到轧制过程中的轧件实际宽度,通过现场仪表实测数据即可完成机架间实际宽度的准确测量,测量精度高,测量过程无风险,能够准确得到精轧区各机架之后的轧件宽度,能够完全替代测宽仪测量。
-
公开(公告)号:CN108213086A
公开(公告)日:2018-06-29
申请号:CN201711467013.X
申请日:2017-12-29
Applicant: 东北大学
Abstract: 本发明属于轧制过程自动控制技术领域,特别涉及一种实现热轧带钢微中浪轧制的方法。该方法通过读写txt文本文件的方法记录热轧过程中用于板形设定的有关参数,包括带钢化学成分,宽度,厚度,钢种名称等,并通过插值的方法确定实现微中浪轧制下带钢各个宽度条件下目标平直度值的增量ΔIU,并将ΔIU转化为末机架弯辊力的增量ΔFb,最后通过弯辊力的增加来达到微中浪轧制的目的。本发明方法在大多板形调试环境下均能方便的实现,且不需要成本上的投入,可以大幅度提高轧制过程中板形控制的精度并提高轧制产品的板形质量和合格率,可以广泛推广到热轧带钢生产中。
-
公开(公告)号:CN107977793A
公开(公告)日:2018-05-01
申请号:CN201711332201.1
申请日:2017-12-13
Applicant: 东北大学
Abstract: 本发明提供一种冷轧轧制升降速过程中加速度设定的优化方法,包括:轧前准备工作,保持稳定的轧制工艺;选取不同板带,在AGC厚度控制下板带出口厚度稳定后,在后续道次中升降速轧制板带,实时记录相关轧制数据进行轧制速度-加速度关系的测试;实时计算当前加速度设定系数,设定当前加速度,将加速度设定值发送至传动控制系统;若轧机出口测厚仪测得的板带厚度偏差超出预定的偏差范围,对加速度设定系数进行二次设定,否则按照当前加速度进行升降速操作。采用易于操作方式控制传动系统并记录实际输出速度、加速时间、厚度偏差数据,获得轧机速度-加速度设定系数曲线,通过调节加速度改变轧制节奏有效发挥工况剧烈变化情况下AGC厚控能力。
-
公开(公告)号:CN106694570A
公开(公告)日:2017-05-24
申请号:CN201611070559.7
申请日:2016-11-29
Applicant: 东北大学
IPC: B21B38/04
CPC classification number: B21B38/04
Abstract: 本发明提供一种热连轧精轧区机架轧后宽展量计算方法,包括:在热连轧精轧区生产过程中,实时检测轧件位置信号、精轧机各机架轧制力及精轧机辊缝位置;计算轧件通过精轧机相邻机架的平均运行速度和相邻测量仪表的平均运行速度;计算轧件头部通过粗轧机出口的平均宽度,计算轧件头部通过精轧机各机架和精轧机出口的平均厚度,计算轧件头部通过精轧机出口的平均宽度;计算精轧后轧件头部的秒流量;按照秒流量恒定原则计算精轧机各机架的出口宽度;计算得到精轧机各机架轧后的轧制宽展量。本发明根据秒流量恒定原则计算得到轧制过程中的轧件实际宽度,通过现场仪表实测数据即可完成机架间实际宽度的准确测量,测量精度高,测量过程无风险,能够准确得到精轧区各机架之后的轧件宽度,能够完全替代测宽仪测量。
-
公开(公告)号:CN104942002B
公开(公告)日:2017-01-18
申请号:CN201510379698.7
申请日:2015-07-01
Applicant: 东北大学
IPC: B21B15/00
Abstract: 本发明提供一种热轧带钢中间坯切头控制方法,包括:获取热轧带钢中间坯运行速度和热轧带钢中间坯头部到飞剪剪切点的初始长度;飞剪控制系统确定当前所需飞剪加速时间、飞剪加速度和恒速运行时间;飞剪控制系统通过飞剪电机控制飞剪先以飞剪加速度持续运行所需飞剪加速时间,再匀速持续运行恒速运行时间,完成热轧带钢中间坯切头控制。本发明综合考虑剪切能量损失和超前率获得了飞剪剪切速度,通过对中间坯实时速度积分获得实时剪切距离和剪切剩余时间,根据飞剪转鼓剩余弧长和实际剪切速度得到飞剪实时加速度和加速时间。本发明在大多轧制现场环境下均能方便实现,根据实际速度实时调整飞剪加速度和加速时间后可以大幅度提高中间坯头部剪切精度。
-
-
-
-
-
-
-
-
-