-
公开(公告)号:CN105537284B
公开(公告)日:2017-05-31
申请号:CN201610047659.1
申请日:2016-01-25
Applicant: 东北大学
IPC: B21B38/00
Abstract: 本发明提供一种热连轧精轧入口温度预报方法,获取中间运输辊道参数和PDI数据;获取粗轧出口实测轧件表面温度平均值和实测轧件厚度平均值;求得轧件的实际运行速度、轧件在中间运输辊道上运行的总时间;分别计算轧件经过通过投用保温罩内的时间、轧件在保温罩外经历的时间、轧件下表面与中间运输辊道接触的时间和与外界环境接触的时间;求得到达精轧入口时轧件上表面温度和上表面温度;计算轧件到达热连轧精轧入口时的温度。本发明根据轧件在中间运输辊道上运行过程中的换热情况,能够通过粗轧出口高温计测量得到的表面温度及保温罩的投用情况、轧件的厚度以及运行速度准确得到精轧入口的轧件温度。
-
公开(公告)号:CN105107849B
公开(公告)日:2017-04-05
申请号:CN201510632907.4
申请日:2015-09-29
Applicant: 东北大学
IPC: B21B38/04
Abstract: 本发明提供一种热连轧中间坯厚度计算方法,包括:在热连轧过程中,测量轧件宽度,测量精轧后轧件厚度,实时检测轧件热信号;计算轧件头部精轧后的平均速度、平均厚度和平均宽度;根据轧件头部精轧后的平均速度、平均厚度和平均宽度,计算精轧后轧件头部的秒流量;计算轧件尾部的平均速度、粗轧后的平均宽度;计算轧件中间坯厚度。本发明根据秒流量恒定原则计算得到的轧件的平均厚度可以作为中间坯的实际厚度;通过现场仪表实测数据即可完成中间坯厚度的准确测量过程。本发明能够精确计算得到中间坯厚度,解决了在无测厚仪的情况下无法测量粗轧后厚度的问题。在节约了生产投资成本的同时,保证了厚度的测量精度。
-
公开(公告)号:CN105537284A
公开(公告)日:2016-05-04
申请号:CN201610047659.1
申请日:2016-01-25
Applicant: 东北大学
IPC: B21B38/00
CPC classification number: B21B38/006
Abstract: 本发明提供一种热连轧精轧入口温度预报方法,获取中间运输辊道参数和PDI数据;获取粗轧出口实测轧件表面温度平均值和实测轧件厚度平均值;求得轧件的实际运行速度、轧件在中间运输辊道上运行的总时间;分别计算轧件经过通过投用保温罩内的时间、轧件在保温罩外经历的时间、轧件下表面与中间运输辊道接触的时间和与外界环境接触的时间;求得到达精轧入口时轧件上表面温度和上表面温度;计算轧件到达热连轧精轧入口时的温度。本发明根据轧件在中间运输辊道上运行过程中的换热情况,能够通过粗轧出口高温计测量得到的表面温度及保温罩的投用情况、轧件的厚度以及运行速度准确得到精轧入口的轧件温度。
-
公开(公告)号:CN104942002A
公开(公告)日:2015-09-30
申请号:CN201510379698.7
申请日:2015-07-01
Applicant: 东北大学
IPC: B21B15/00
Abstract: 本发明提供一种热轧带钢中间坯切头控制方法,包括:获取热轧带钢中间坯运行速度和热轧带钢中间坯头部到飞剪剪切点的初始长度;飞剪控制系统确定当前所需飞剪加速时间、飞剪加速度和恒速运行时间;飞剪控制系统通过飞剪电机控制飞剪先以飞剪加速度持续运行所需飞剪加速时间,再匀速持续运行恒速运行时间,完成热轧带钢中间坯切头控制。本发明综合考虑剪切能量损失和超前率获得了飞剪剪切速度,通过对中间坯实时速度积分获得实时剪切距离和剪切剩余时间,根据飞剪转鼓剩余弧长和实际剪切速度得到飞剪实时加速度和加速时间。本发明在大多轧制现场环境下均能方便实现,根据实际速度实时调整飞剪加速度和加速时间后可以大幅度提高中间坯头部剪切精度。
-
公开(公告)号:CN105107849A
公开(公告)日:2015-12-02
申请号:CN201510632907.4
申请日:2015-09-29
Applicant: 东北大学
IPC: B21B38/04
CPC classification number: B21B38/04 , B21B2038/004
Abstract: 本发明提供一种热连轧中间坯厚度计算方法,包括:在热连轧过程中,测量轧件宽度,测量精轧后轧件厚度,实时检测轧件热信号;计算轧件头部精轧后的平均速度、平均厚度和平均宽度;根据轧件头部精轧后的平均速度、平均厚度和平均宽度,计算精轧后轧件头部的秒流量;计算轧件尾部的平均速度、粗轧后的平均宽度;计算轧件中间坯厚度。本发明根据秒流量恒定原则计算得到的轧件的平均厚度可以作为中间坯的实际厚度;通过现场仪表实测数据即可完成中间坯厚度的准确测量过程。本发明能够精确计算得到中间坯厚度,解决了在无测厚仪的情况下无法测量粗轧后厚度的问题。在节约了生产投资成本的同时,保证了厚度的测量精度。
-
公开(公告)号:CN104741388B
公开(公告)日:2016-10-19
申请号:CN201510176042.5
申请日:2015-04-15
Applicant: 东北大学
IPC: B21B37/20
Abstract: 本发明提供一种热连轧精轧厚度控制方法,包括获取轧机设备参数及带钢规格参数;对末机架轧机进行单位阶跃响应测试,确定单位阶跃响应周期即液压缸传递函数的时间参数、监控AGC系统的控制周期以及单位阶跃响应滞后采样离散点的个数;采用带惯性环节的比例积分控制器的Smith预估控制策略对末机架轧机进行控制;利用热连轧精轧监控AGC系统控制模型,通过调节液压缸进行下一周期厚度控制。本发明将监控AGC的控制过程等同于一个具有纯滞后的控制对象,将Smith预估补偿引入了监控AGC控制系统,用GM方法来直接对轧机的辊缝进行软测量,避开了由于HGC传递函数不准可能产生的计算误差,显著提高了控制系统的响应速度、稳定性和控制精度。
-
公开(公告)号:CN106694570B
公开(公告)日:2018-10-23
申请号:CN201611070559.7
申请日:2016-11-29
Applicant: 东北大学
IPC: B21B38/04
Abstract: 本发明提供一种热连轧精轧区机架轧后宽展量计算方法,包括:在热连轧精轧区生产过程中,实时检测轧件位置信号、精轧机各机架轧制力及精轧机辊缝位置;计算轧件通过精轧机相邻机架的平均运行速度和相邻测量仪表的平均运行速度;计算轧件头部通过粗轧机出口的平均宽度,计算轧件头部通过精轧机各机架和精轧机出口的平均厚度,计算轧件头部通过精轧机出口的平均宽度;计算精轧后轧件头部的秒流量;按照秒流量恒定原则计算精轧机各机架的出口宽度;计算得到精轧机各机架轧后的轧制宽展量。本发明根据秒流量恒定原则计算得到轧制过程中的轧件实际宽度,通过现场仪表实测数据即可完成机架间实际宽度的准确测量,测量精度高,测量过程无风险,能够准确得到精轧区各机架之后的轧件宽度,能够完全替代测宽仪测量。
-
公开(公告)号:CN106694570A
公开(公告)日:2017-05-24
申请号:CN201611070559.7
申请日:2016-11-29
Applicant: 东北大学
IPC: B21B38/04
CPC classification number: B21B38/04
Abstract: 本发明提供一种热连轧精轧区机架轧后宽展量计算方法,包括:在热连轧精轧区生产过程中,实时检测轧件位置信号、精轧机各机架轧制力及精轧机辊缝位置;计算轧件通过精轧机相邻机架的平均运行速度和相邻测量仪表的平均运行速度;计算轧件头部通过粗轧机出口的平均宽度,计算轧件头部通过精轧机各机架和精轧机出口的平均厚度,计算轧件头部通过精轧机出口的平均宽度;计算精轧后轧件头部的秒流量;按照秒流量恒定原则计算精轧机各机架的出口宽度;计算得到精轧机各机架轧后的轧制宽展量。本发明根据秒流量恒定原则计算得到轧制过程中的轧件实际宽度,通过现场仪表实测数据即可完成机架间实际宽度的准确测量,测量精度高,测量过程无风险,能够准确得到精轧区各机架之后的轧件宽度,能够完全替代测宽仪测量。
-
公开(公告)号:CN104942002B
公开(公告)日:2017-01-18
申请号:CN201510379698.7
申请日:2015-07-01
Applicant: 东北大学
IPC: B21B15/00
Abstract: 本发明提供一种热轧带钢中间坯切头控制方法,包括:获取热轧带钢中间坯运行速度和热轧带钢中间坯头部到飞剪剪切点的初始长度;飞剪控制系统确定当前所需飞剪加速时间、飞剪加速度和恒速运行时间;飞剪控制系统通过飞剪电机控制飞剪先以飞剪加速度持续运行所需飞剪加速时间,再匀速持续运行恒速运行时间,完成热轧带钢中间坯切头控制。本发明综合考虑剪切能量损失和超前率获得了飞剪剪切速度,通过对中间坯实时速度积分获得实时剪切距离和剪切剩余时间,根据飞剪转鼓剩余弧长和实际剪切速度得到飞剪实时加速度和加速时间。本发明在大多轧制现场环境下均能方便实现,根据实际速度实时调整飞剪加速度和加速时间后可以大幅度提高中间坯头部剪切精度。
-
公开(公告)号:CN104741388A
公开(公告)日:2015-07-01
申请号:CN201510176042.5
申请日:2015-04-15
Applicant: 东北大学
IPC: B21B37/20
CPC classification number: B21B37/20
Abstract: 本发明提供一种热连轧精轧厚度控制方法,包括获取轧机设备参数及带钢规格参数;对末机架轧机进行单位阶跃响应测试,确定单位阶跃响应周期即液压缸传递函数的时间参数、监控AGC系统的控制周期以及单位阶跃响应滞后采样离散点的个数;采用带惯性环节的比例积分控制器的Smith预估控制策略对末机架轧机进行控制;利用热连轧精轧监控AGC系统控制模型,通过调节液压缸进行下一周期厚度控制。本发明将监控AGC的控制过程等同于一个具有纯滞后的控制对象,将Smith预估补偿引入了监控AGC控制系统,用GM方法来直接对轧机的辊缝进行软测量,避开了由于HGC传递函数不准可能产生的计算误差,显著提高了控制系统的响应速度、稳定性和控制精度。
-
-
-
-
-
-
-
-
-