-
公开(公告)号:CN116789186A
公开(公告)日:2023-09-22
申请号:CN202310088408.8
申请日:2023-02-09
Applicant: 郑州航空工业管理学院
IPC: C01G53/00
Abstract: 本发明涉及高熵陶瓷材料制备技术领域,具体为一种均匀(ZrTiCoNiNb)O高熵氧化物粉体及其制备方法和应用。(ZrTiCoNiNb)O高熵氧化物粉体按照如下步骤制备:将ZrO2、TiO2、CoO、NiO、Nb2O5球磨混合均匀,获得原料混合粉体;将原料混合粉体装填至坩埚中,引入温场调节机制,进行微波处理,即得(ZrTiCoNiNb)O高熵氧化物陶瓷粉体材料。本发明基于微波加热的特点,在微波加热保温结构中引入SiC棒调节样品温场,从而利用微波加热得到均匀稳定的高熵氧化物陶瓷粉体,烧结过程短时快速,环保且高效,具有很好的应用前景。
-
公开(公告)号:CN114590817B
公开(公告)日:2023-08-01
申请号:CN202210378075.8
申请日:2022-04-12
Applicant: 郑州航空工业管理学院
Abstract: 本发明属于二维材料技术领域,公开一种二维层状硼化物材料及其制备方法和作为电磁波吸收材料的应用。将MoAlB加入到刻蚀剂溶液中,在40‑50℃下搅拌至少72h;其中,MoAlB∶刻蚀剂溶液=(0.3‑0.5)g∶(50‑100)mL;所述刻蚀剂溶液为0.5‑5mol/L的HCL溶液;将所得溶液多次离心洗涤,将下层离心所得沉淀物真空干燥,得到1#二维层状硼化物材料。本发明制备的二维层状硼化物材料由于有较高的比表面积,能够为催化领域提高额外的催化位点,在化学催化领域有广阔的发展前景,另一方面因为多层的微观结构,能够使电磁波在层与层之间发生反射,促进电磁能向热能的转化,在电磁波吸收领域也大有可为,而且由于有较高的电子迁移率,在能源储存、半导体器件领域也有巨大的发展潜力。
-
公开(公告)号:CN112209725B
公开(公告)日:2023-06-06
申请号:CN202011103898.7
申请日:2020-10-15
Applicant: 郑州航空工业管理学院
IPC: C04B35/622 , C04B35/584
Abstract: 本发明属于氮化硅陶瓷技术领域,具体涉及一种氮化硅陶瓷烧结的前处理方法,还涉及一种氮化硅陶瓷及其制备方法。本发明的氮化硅陶瓷烧结的前处理方法,包括以下步骤:在烧结容器中,将氮化硅坯体包埋入氮化硅粉体中,然后在氮化硅粉体表面覆盖盖板,之后在盖板上平铺二氧化硅粉;所述盖板为惰性耐火陶瓷板。本发明的前处理方法有效避免了氮化硅陶瓷在空气气氛烧结中的氧化,也可有效减少氮化硅埋粉的氧化,实现了氮化硅陶瓷在空气气氛中的烧结;并且所用氮化硅埋粉和二氧化硅粉容易分离,且可反复多次复用,可大幅降低埋粉消耗,减少成本。
-
公开(公告)号:CN114853458A
公开(公告)日:2022-08-05
申请号:CN202210345917.X
申请日:2022-04-02
Applicant: 郑州航空工业管理学院
IPC: C04B35/12 , H05K9/00 , C04B35/622 , C04B35/64
Abstract: 本发明属于电磁波吸收材料技术领域,公开一种高熵陶瓷及其制备方法和作为电磁波吸收材料的应用。化学分子式为(Fe0.2Co0.2Ni0.2Cu0.2Zn0.2)Cr2O4,微观形貌为平面状,具有两种晶型:尖晶石型与钙钛矿型;制备步骤如下:(1)、按FeO、CoO、NiO、CuO和ZnO的摩尔数之和∶Cr2O3=1∶(1‑3)且FeO、CoO、NiO、CuO、ZnO等摩尔量,称取相应质量的粉末状金属氧化物原料FeO、CoO、NiO、CuO、ZnO、Cr2O3并混合均匀;(2)、将步骤(1)制备好的混合粉末压制成块状,控温在1000‑1400℃煅烧6‑12h,取出煅烧产物即得高熵陶瓷。本发明制备出具备电磁波吸收性能的高熵陶瓷,为此类高熵陶瓷的电磁吸收和屏蔽的实际应用提供条件。
-
公开(公告)号:CN110745827B
公开(公告)日:2022-02-15
申请号:CN201810821990.3
申请日:2018-07-24
Applicant: 郑州航空工业管理学院
IPC: C01B32/963
Abstract: 本发明涉及一种二维片状SiC材料的制备方法,属于微波合成技术领域。本发明的二维片状SiC材料的制备方法,包括以下步骤:1)将主要由溶胶和膨胀碳材料组成的分散体系进行凝胶化处理,得到前驱体凝胶;所述溶胶为硅溶胶或由硅源经过水解、缩合得到;2)将所得的前驱体凝胶进行干燥,得到复合粉体;3)将所得的复合粉体进行反应烧成,即得。本发明的二维片状SiC材料的制备方法,以膨胀碳材料作为碳源,分散体系中的硅溶胶颗粒分布于膨胀碳材料的片层状结构表面,也呈片状分布,经过烧成反应后,即可得到具有纳米片状结构的二维片状的SiC材料,具有比表面积更大、更易分散的优点,并且层状结构能够改善其在复合材料的界面润湿性。
-
公开(公告)号:CN113582696A
公开(公告)日:2021-11-02
申请号:CN202111007346.0
申请日:2021-08-30
Applicant: 郑州航空工业管理学院
IPC: C04B35/56 , C04B35/622 , C04B35/64
Abstract: 本发明属于高熵陶瓷材料技术领域,公开了一种(ZrTiCoNb)C高熵碳化物陶瓷材料及其制备方法,所述制备方法包括:将锆源、钛源、钴源、铌源以及碳源通过机械研磨混合均匀,获得混合粉体;随后将获得的混合粉体预压制坯后,于1200~2000℃微波烧结1~2h,即得高熵碳化物陶瓷材料。本发明方法合成成本低且合成效率高,且通过本发明方法制得的高熵碳化物陶瓷材料,具有较低的氧含量以及较细的晶粒尺寸。
-
公开(公告)号:CN111957971A
公开(公告)日:2020-11-20
申请号:CN202010964465.4
申请日:2020-09-15
Applicant: 郑州航空工业管理学院
Abstract: 本发明属于金属材料和复合材料技术领域,公开一种纯铜、铜合金及铜基复合材料的烧结制备方法。将纯铜、铜合金或铜基复合材料粉末装入石墨模具中放入振荡烧结炉中,在真空或惰性气体条件下进行振荡烧结:烧结温度500~850℃、烧结保温时间10~180 min、振荡压力的平均值10~150 MPa、振荡压力的振荡幅度5~80 MPa、振荡频率2~100 Hz。本发明方法所采用的烧结温度比传统热压烧结和无压烧结低100~500℃,烧结温度低,所以制备过程消耗能量少;本发明所制备材料的致密度高,减少或无需后续致密化处理,缩短了工艺流程,提高了生产效率;本发明所制备材料的强度提高10%左右,导电性和导热性提高10%左右。
-
公开(公告)号:CN111762785A
公开(公告)日:2020-10-13
申请号:CN202010250363.6
申请日:2020-04-01
Applicant: 郑州航空工业管理学院
IPC: C01B32/977 , C01B32/97 , B82Y30/00
Abstract: 本发明涉及一种双频微波制备颗粒状碳化硅的方法,属于碳化硅制备技术领域。本发明的双频微波制备颗粒状碳化硅的方法,包括以下步骤:(1)碳和正硅酸乙酯经溶胶-凝胶法得到二氧化硅包裹碳的前驱体,前驱体经压制形成坯体;(2)将坯体包埋在石英砂中,利用双频微波同时进行微波烧结,得到颗粒状碳化硅;所述双频微波的两个频率分别为2450MHz和915MHz。该方法利用碳优良的吸波性能,采用双频微波的方式,不仅能够提高加热效率,更容易控制碳化硅生长的形貌,实现了SiC晶体的快速合成,得到结晶良好的碳化硅颗粒,提高了制备效率;且双频微波制得的碳化硅的晶体结晶度好,缺陷少,晶体产量高,颗粒大小均匀,质量更均一。
-
公开(公告)号:CN107500776B
公开(公告)日:2020-10-02
申请号:CN201710709832.4
申请日:2017-08-18
Applicant: 郑州航空工业管理学院
IPC: C04B35/5831 , C04B35/645 , C04B35/65 , C22C26/00
Abstract: 本发明属于聚晶立方氮化硼刀具材料领域,公开一种聚晶立方氮化硼刀具材料及其制备方法。由下述重量百分比的原料制成:立方氮化硼粉体30~95%、结合剂5~70%;所述结合剂的重量百分比组成为下述的组成a或组成b;组成a:硅粉2~40%、0
-
公开(公告)号:CN111304476A
公开(公告)日:2020-06-19
申请号:CN202010132747.8
申请日:2020-02-29
Applicant: 郑州航空工业管理学院
Abstract: 本发明公开了一种抑制原始颗粒边界形成的细晶粉末高温合金的制备方法,包括以下步骤:(1)取预制粉体装入涂抹氮化硼涂层的高纯石墨压制模具中,所述预制粉体由以下重量百分比的原料组成:铬12.0-17.0%、钴7.0-14.0%、钨3.30-4.20%、铌0.05-3.50%、铝2.00-3.70%、钛2.30-3.90%、碳0.02-0.07%、锆0.025-0.070%、硼0.006-0.020%、铁≤0.50%、锰≤0.150%、硅≤0.150%、硫≤0.015%、磷≤0.015%、余量为镍;(2)将上述步骤(1)的石墨压制模具进行冷压成型;(3)将上述步骤(2)中冷压成型后装有样品的石墨压制模具放入振荡压力烧结炉腔内进行烧结,即得成品。本发明采用振荡压力烧结的方式,使粉末高温合金的原始颗粒边界基本消除,并且晶粒细化均匀,在保证原始颗粒边界基本消除的前提下避免晶粒的异常长大,显著提高粉末高温合金的性能。
-
-
-
-
-
-
-
-
-