一种高速列车抗横风方法及车翼

    公开(公告)号:CN115214730A

    公开(公告)日:2022-10-21

    申请号:CN202211010871.2

    申请日:2022-08-23

    Applicant: 中南大学

    Abstract: 本发明提供了一种高速列车抗横风方法及车翼,在车体顶部布设车翼,当遭遇横风时,车翼相对车体顶部升起并向背风侧伸出,使车翼产生抵抗横风的抵抗力矩,改变车翼的升降位置调整抵抗力矩的大小,而让车体的总倾覆力矩满足安全要求。本发明能够让高速列车遭遇横风时,通过车翼的升力产生一个与横风力矩相平衡而抵消的力矩,从而降低横风力矩的影响,同时还可调节车翼的高度位置、俯仰角度、车翼方向等,以使车翼的气动效应发生变化,达到调节抵抗力矩和满足列车双向运行的目的,经过数值仿真论证,尤其在改变车翼高度位置时,车体总倾覆力矩变化明显。

    基于泄压空间角的隧道微气压波缓解方法

    公开(公告)号:CN114837690A

    公开(公告)日:2022-08-02

    申请号:CN202210582759.X

    申请日:2022-05-26

    Applicant: 中南大学

    Abstract: 本发明提供了列车进入缓冲结构后一种基于泄压空间角的隧道微气压波缓解方法,当列车进入缓冲结构时,前方气流以球面波的形式向缓冲结构散开,并且该球面波的等效半径为隧道断面的水力半径,形成的空间角为1/4球体π,以该球体的球心为投影中心,将缓冲结构的开孔区域向球面S上投影,得到投影面积S1,定义泄压空间角θ=S1/S×π,调整泄压空间角θ的大小,有效减缓列车进入隧道产生的初始压缩波,从而减小隧道出口微气压波。本发明满足了在既有铁路隧道的基础上,更高速列车顺利安全地通过隧道这一需求,通过对列车进入缓冲结构后泄压空间角特征与隧道出口微气压波之间影响机制的研究,得出高效缓解微气压波的缓冲结构模型,为缓冲结构设计提供新的方式。

    一种基于入射空间角的隧道微气压波缓解方法

    公开(公告)号:CN114837689A

    公开(公告)日:2022-08-02

    申请号:CN202210504461.7

    申请日:2022-05-10

    Applicant: 中南大学

    Abstract: 本发明提供了一种基于入射空间角的隧道微气压波缓解方法,当列车靠近缓冲结构时,前方气流以球面波的形式向四周散开,并且该球面波的等效半径为隧道断面的水力半径,形成的空间角为1/4球体π,以该球体的球心为投影中心,将缓冲结构入口平面向球面S上投影,得到投影面积S1,定义入射空间角θ=S1/S×π,通过减小入射空间角θ的大小,来减小列车通过隧道产生的微气压波。本发明满足了在既有铁路隧道的基础上,更高速列车顺利安全地通过隧道这一需求,通过对缓冲结构入射空间角特征与隧道出口微气压波之间影响机制的研究,可以得出高效缓解微气压波的缓冲结构模型,为缓冲结构设计提供新的方式。

    使用主动吹气提升大风环境运行安全的列车及其控制方法

    公开(公告)号:CN114633770A

    公开(公告)日:2022-06-17

    申请号:CN202210314447.0

    申请日:2022-03-28

    Applicant: 中南大学

    Abstract: 本发明公开了使用主动吹气提升大风环境运行安全的列车及其控制方法,所述列车包括:设置在列车各节车辆的车体表面,用于在大风环境下沿车体表面向外喷射气流,以提升各节车辆的抗风气动性能的吹气单元,所述吹气单元的位置根据各节车辆的车型及其所处的风环境特征确定。本发明中的使用主动吹气提升大风环境运行安全的列车及其控制方法,通过设置在列车表面的法向吹气槽改变风环境下列车近体区流场结构,提升列车气动性能,从而实现对列车安全的有效主动控制。

    一种基于机器学习优化的高速列车气动头部外形设计方法

    公开(公告)号:CN113032902B

    公开(公告)日:2022-06-17

    申请号:CN202110291867.7

    申请日:2021-03-18

    Applicant: 中南大学

    Abstract: 本发明涉及高速列车头部外形设计领域,具体涉及一种基于机器学习优化的高速列车气动头部外形设计方法。包括:获取高速列车气动性能数据和外形设计参数变量作样本数据;采用基于皮尔森相关系数的聚类方法和最大互信息系数获取参数变量之间的关联程度,并筛选优化参数;将样本数据随机拆分为训练集和测试集;采用蜻蜓算法对神经网络模型进行训练,获得第一气动性能预测模型;获取预设预测精度,进行测试获得测试预测精度;比较两种精度值获得终气动性能预测模型;设定多个参数变量的数值范围和允许的最小改变量,通过终气动性能预测模型采用蜻蜓优化算法获取所述参数变量的最优值,该方案可以在短时间内产生最优决策,且具有良好的扩展性。

    一种基于多孔介质材料的受电弓杆件减阻降噪装置

    公开(公告)号:CN114274781A

    公开(公告)日:2022-04-05

    申请号:CN202111530855.1

    申请日:2021-12-15

    Applicant: 中南大学

    Abstract: 本发明公开了一种基于多孔介质材料的受电弓杆件减阻降噪装置,包括上臂杆、下臂杆和弓头滑板,所述上臂杆和下臂杆的外壁均包覆有多孔介质材料包覆圈,所述弓头滑板的水平平直段的后侧安装有多孔介质材料板。本申请的基于多孔介质材料的受电弓杆件减阻降噪装置,不仅建筑降噪效果好,而且能大幅抑制列车运行中受电弓系统的振荡特性,达到稳定弓网接触及优化受流效果。

    一种监护室危险预警系统
    97.
    发明公开

    公开(公告)号:CN114129140A

    公开(公告)日:2022-03-04

    申请号:CN202111338003.2

    申请日:2021-11-12

    Abstract: 本发明公开了一种监护室危险预警系统,属于智能医疗技术领域,其技术方案要点是:包括体温感应监测模块、引流量监测模块、创面渗液监测模块、信号集成装置、显示模块、声光报警装置和电源模块;体温感应监测模块包括柔性基体、粘附层和温度传感器;引流量监测模块为滴速感应器;创面渗液监测模块包括垫单和内嵌于垫单的漏液感应器;信号集成装置包括报警信号中心、无线信号发射装置、无线信号接收装置、信号输入装置和远程显示终端;显示模块为与中央控制处理器连接的液晶显示屏。本发明主要用于实时监测患者的体温、引流液的流量和手术部位是否存在漏液,能够有效避免因手术部位被覆盖而导致的异常情况发现不及时的问题。

    基于涡发生器的列车增减阻装置

    公开(公告)号:CN113997964A

    公开(公告)日:2022-02-01

    申请号:CN202111432133.2

    申请日:2021-11-29

    Applicant: 中南大学

    Abstract: 本发明提供了一种基于涡发生器的列车增减阻装置,包括:涡发生器,所述涡发生器设置有偶数个,偶数个所述涡发生器对称设置在列车两侧,所述涡发生器分别设置在列车头车和列车尾车上,所述涡发生器垂直于所述列车流线型区域车壳设置,所述涡发生器设置有滑动控制机构,所述涡发生器通过滑动控制机构升起或收缩设置在所述列车流线型区域车壳处,所述涡发生器设置有旋转机构,所述旋转机构用于调节所述涡发生器与列车中线间的角度。本发明能够通过减弱或增强尾涡强度的方法,从尾涡控制的角度实现尾车阻力控制,同时头车所设涡发生器可打断列车流线型,增大头车阻力,从而实现整车增减阻协同控制。

    高速列车受电弓区域全封闭式导流装置

    公开(公告)号:CN113978496A

    公开(公告)日:2022-01-28

    申请号:CN202111508318.7

    申请日:2021-12-10

    Applicant: 中南大学

    Abstract: 本发明提供了一种高速列车受电弓区域全封闭式导流装置,包括:导流罩,所述导流罩对称设置有两个侧翼,所述导流罩呈流线化的圆拱形或水滴形设置,所述导流罩的中部开设有下臂框孔和拉杆孔,受电弓设置在所述导流罩内,所述下臂框孔和拉杆孔分别用于所述受电弓的下臂框和拉杆通过;驱动装置,所述驱动装置对称设置有两组,两组所述驱动装置分别连接两个所述侧翼,所述驱动装置用于驱动所述侧翼的张开、闭合和转动。本发明不影响受电弓自身功能,降弓时实现受电弓全部封闭,升弓时降低气流与受电弓底部基座和杆件、受电弓区域腔体的冲击,从而达到减阻降噪目的。

    一种双层风阻制动装置、双层司机室结构及高速列车

    公开(公告)号:CN111976754B

    公开(公告)日:2021-11-02

    申请号:CN202010856669.6

    申请日:2020-08-24

    Applicant: 中南大学

    Abstract: 本发明公开了一种双层风阻制动装置、双层司机室结构及高速列车,双层风阻制动装置包括安装于列车变截面区域的外层风阻制动板和内层风阻制动板,外层风阻制动板包括沿变截面区域外部轮廓横向设置的多块外层制动单元板,内层风阻制动板包括沿变截面区域外部轮廓横向设置的多块内层制动单元板,高速列车司机室上安装开合驱动机构,外层风阻制动板和内层风阻制动板打开时,内层制动单元板位于外层制动单元板内侧且位于相邻的外层制动单元板间隙中。该双层风阻制动装置、双层司机室结构及高速列车结构简单、安装方便、可靠性高,能够满足高速列车紧急制动状态下对制动力的需求,解决高速列车在紧急制动时制动力不足的问题。

Patent Agency Ranking