-
公开(公告)号:CN117852322A
公开(公告)日:2024-04-09
申请号:CN202410263245.7
申请日:2024-03-08
Applicant: 西北工业大学深圳研究院 , 西北工业大学
IPC: G06F30/20 , G06F30/15 , G06F17/11 , G06F119/14
Abstract: 本发明公开一种基于虚功率原理的变体飞行器动力学建模方法及装置,涉及飞行器动力学与控制领域,方法包括:对变体飞行器进行运动学分析,建立广义坐标向量与所述变体飞行器各刚体上任意质点之间的虚速度关系;广义坐标向量包括机身质心的平动位移、机身的转动角速度、左机翼相对于机身的相对角速度以及右机翼相对于机身的相对角速度;根据广义坐标向量与变体飞行器各刚体上任意质点之间的虚速度关系,基于虚功率原理建立变体飞行器的动力学方程;基于固定外形飞行器的动力学模型及变体飞行器的动力学方程建立变体飞行器的动力学模型。本发明可精确描述变体飞行器的飞行运动与变体运动之间的耦合关系,提高变体飞行器的仿真精度。
-
公开(公告)号:CN117852322B
公开(公告)日:2024-05-10
申请号:CN202410263245.7
申请日:2024-03-08
Applicant: 西北工业大学深圳研究院 , 西北工业大学
IPC: G06F30/20 , G06F30/15 , G06F17/11 , G06F119/14
Abstract: 本发明公开一种基于虚功率原理的变体飞行器动力学建模方法及装置,涉及飞行器动力学与控制领域,方法包括:对变体飞行器进行运动学分析,建立广义坐标向量与所述变体飞行器各刚体上任意质点之间的虚速度关系;广义坐标向量包括机身质心的平动位移、机身的转动角速度、左机翼相对于机身的相对角速度以及右机翼相对于机身的相对角速度;根据广义坐标向量与变体飞行器各刚体上任意质点之间的虚速度关系,基于虚功率原理建立变体飞行器的动力学方程;基于固定外形飞行器的动力学模型及变体飞行器的动力学方程建立变体飞行器的动力学模型。本发明可精确描述变体飞行器的飞行运动与变体运动之间的耦合关系,提高变体飞行器的仿真精度。
-
公开(公告)号:CN117873136B
公开(公告)日:2024-05-24
申请号:CN202410268676.2
申请日:2024-03-11
Applicant: 西北工业大学
IPC: G05D1/46 , G05D109/28
Abstract: 本发明公开一种高速飞行器协同飞行与预设性能避碰的控制方法,涉及高速飞行器协同飞行控制领域。本发明根据高速飞行器的动力学模型和整体的分布式位置跟踪误差,基于固定时间控制理论设计分布式队形保持器,并在高速飞行器协同飞行的队形保持阶段利用分布式队形保持器进行协同飞行控制,其采用的分布式通信策略减小了通信压力,固定时间控制提升了各高速飞行器位置跟踪误差的收敛精度与速度,从而能够提高协同飞行的效率和打击效能;进一步地,在队形变换阶段通过设计变换轨迹与预设性能控制的避碰控制器,精确限定队形位置跟踪误差的瞬态性能与稳态性能,避免了碰撞与超调,保障了队形变换过程的安全性。
-
公开(公告)号:CN117852309A
公开(公告)日:2024-04-09
申请号:CN202410251189.5
申请日:2024-03-06
Applicant: 西北工业大学
Abstract: 本发明公开了一种基于指标层次化的突防效能评估方法,涉及制导控制技术领域,包括:建立进攻弹与拦截弹攻防博弈场景,对攻防双方进行蒙特卡洛打靶仿真,得到攻防对抗仿真结果;基于攻防对抗仿真结果确定突防效能评估指标体系;对突防效能评估指标体系进行层级化分析,得到层级化指标;基于层级化指标,采用神经网络进行突防效能评估。本发明能够对进攻弹的突防效能从多维度指标方面进行层次化系统化评估,为实际场景提供一定指导意义,具有较大的战略优势和广阔的应用前景。
-
公开(公告)号:CN117826617A
公开(公告)日:2024-04-05
申请号:CN202410239277.3
申请日:2024-03-04
Applicant: 西北工业大学
IPC: G05B13/04
Abstract: 本发明公开一种基于智能网络模型的飞行器预设性能滑模控制方法及装置,涉及飞行器控制领域,方法包括:根据当前时刻飞行器的速度、攻角、升降舵偏转角及燃油当量比,基于智能网络模型确定当前误差动力学函数;根据当前误差动力学函数及飞行器传统误差动力学模型建立飞行器智能误差动力学模型;确定速度设定时间预设性能函数及攻角设定时间预设性能函数,进一步确定速度控制器及攻角转换误差动力学模型;基于攻角转换误差动力学模型,采用自适应超螺旋滑模算法,建立飞行器预设性能超螺旋滑模控制器,以确定攻角控制器;基于速度控制器及攻角控制器对飞行器进行控制。本发明提高了飞行器控制的鲁棒性和控制精度。
-
公开(公告)号:CN118730110A
公开(公告)日:2024-10-01
申请号:CN202410761202.1
申请日:2024-06-13
IPC: G01C21/20
Abstract: 本发明公开了一种空中机动目标动平台被动协同定位方法及系统,属于飞行器导航定位技术领域,将获取的目标的角度信息及该自身的位置信息传递给其他动平台,通过到达角定位算法计算目标的位置,将其作为滤波迭代的初始值;通过目标的位置和自身的位置,计算动平台和目标之间相对距离的大小,使用方差传递函数对动平台和目标之间相对距离的方差进行推导,将动平台和目标之间相对距离作为动平台的补全量测;将获取的目标角度信息以及动平台的补全量测作为滤波的量测模型;建立目标状态模型,根据初始值和目标状态模型,对目标状态进行预测,获得目标状态的预测值;根据量测模型,对目标状态的预测值进行更新,获得目标状态的估计值;将当前时刻目标状态的估计值作为下一个时刻滤波迭代的初始值,重复上述预测和更新过程,获得空中机动目标定位结果。该方法能够显著提升目标定位的精确度。
-
公开(公告)号:CN117852415B
公开(公告)日:2024-05-24
申请号:CN202410256806.0
申请日:2024-03-07
Applicant: 西北工业大学
IPC: G06F30/27 , G06N5/04 , G06F17/11 , G06F119/14
Abstract: 本发明公开一种基于变步进退法的超高速飞行器机动空间解算方法及装置,涉及超高速飞行器与拦截器攻防博弈技术领域,方法包括:构建超高速飞行器与拦截器的运动模型,并设定仿真限制条件,得到仿真运动模型;基于仿真运动模型构建拦截器的机动拦截策略;构建超高速飞行器与拦截器的机动空间;基于仿真运动模型、拦截器的机动拦截策略及机动空间,采用变步进退法确定不同攻防博弈态势下机动空间内的不可逃逸区、机动逃逸区及无威胁区,以对超高速飞行器进行机动空间解算。本发明提高了超高速飞行器机动空间解算的效率,进而提高了超高速飞行器在突防博弈作战中的作战效能。
-
公开(公告)号:CN117891271A
公开(公告)日:2024-04-16
申请号:CN202410303222.4
申请日:2024-03-18
Applicant: 西北工业大学
IPC: G05D1/46 , G05D109/28
Abstract: 本发明提供了一种考虑时间和角度约束的高速飞行器三维协同制导方法,涉及飞行器协同制导领域,包括:根据飞行器的状态信息确定各个飞行器的终端约束条件;状态信息包括飞行器初始时刻的空间位置、速度、弹道倾角、弹道偏角,目标的位置以及速度;所述终端约束条件包括攻击时间约束以及攻击角度约束;基于飞行器‑目标的三维相对运动模型,在俯仰通道,根据所述攻击时间约束确定飞行器的俯仰制导指令;基于飞行器‑目标的三维相对运动模型,在偏航通道,根据所述攻击角度约束确定飞行器的偏航制导指令;根据所述俯仰制导指令以及所述偏航制导指令控制各个飞行器运动。本发明能够在三维空间中实现水平面内的多方位打击,提高制导精度。
-
公开(公告)号:CN117852415A
公开(公告)日:2024-04-09
申请号:CN202410256806.0
申请日:2024-03-07
Applicant: 西北工业大学
IPC: G06F30/27 , G06N5/04 , G06F17/11 , G06F119/14
Abstract: 本发明公开一种基于变步进退法的超高速飞行器机动空间解算方法及装置,涉及超高速飞行器与拦截器攻防博弈技术领域,方法包括:构建超高速飞行器与拦截器的运动模型,并设定仿真限制条件,得到仿真运动模型;基于仿真运动模型构建拦截器的机动拦截策略;构建超高速飞行器与拦截器的机动空间;基于仿真运动模型、拦截器的机动拦截策略及机动空间,采用变步进退法确定不同攻防博弈态势下机动空间内的不可逃逸区、机动逃逸区及无威胁区,以对超高速飞行器进行机动空间解算。本发明提高了超高速飞行器机动空间解算的效率,进而提高了超高速飞行器在突防博弈作战中的作战效能。
-
公开(公告)号:CN117826617B
公开(公告)日:2024-05-10
申请号:CN202410239277.3
申请日:2024-03-04
Applicant: 西北工业大学
IPC: G05B13/04
Abstract: 本发明公开一种基于智能网络模型的飞行器预设性能滑模控制方法及装置,涉及飞行器控制领域,方法包括:根据当前时刻飞行器的速度、攻角、升降舵偏转角及燃油当量比,基于智能网络模型确定当前误差动力学函数;根据当前误差动力学函数及飞行器传统误差动力学模型建立飞行器智能误差动力学模型;确定速度设定时间预设性能函数及攻角设定时间预设性能函数,进一步确定速度控制器及攻角转换误差动力学模型;基于攻角转换误差动力学模型,采用自适应超螺旋滑模算法,建立飞行器预设性能超螺旋滑模控制器,以确定攻角控制器;基于速度控制器及攻角控制器对飞行器进行控制。本发明提高了飞行器控制的鲁棒性和控制精度。
-
-
-
-
-
-
-
-
-