一种新型氢能混动游艇
    2.
    发明公开

    公开(公告)号:CN112550569A

    公开(公告)日:2021-03-26

    申请号:CN202011599332.8

    申请日:2020-12-29

    Abstract: 本发明提供一种新型氢能混动游艇,包括:由首至尾依次设置的防撞舱、卫生储物间、甲板功能区和艉阱以及燃料电池系统和超级电容系统,甲板功能区包括甲板上功能区和甲板下功能区,燃料电池系统和超级电容系统共同为整个游艇供电,在不同工况下,分别有不同的供电组合方式。本发明整体由铝合金型材焊接而成,包括主船体、驾驶室在内;船体型线采用深V型双折角剖面,单体单挂机;整体质量较轻,有利于节能减排;以燃料电池和超级电容组成混合动力系统,搭配无轴环形推进器,整体上减少能量传递过程的损失,提高能量利用率;燃料电池供电较传统柴油机更加安静,无轴环形推进器可减少震动和噪声,节能环保的同时提高了游艇安静舒适的效果。

    一种新型氢能混动游艇
    5.
    发明授权

    公开(公告)号:CN112550569B

    公开(公告)日:2024-09-13

    申请号:CN202011599332.8

    申请日:2020-12-29

    Abstract: 本发明提供一种新型氢能混动游艇,包括:由首至尾依次设置的防撞舱、卫生储物间、甲板功能区和艉阱以及燃料电池系统和超级电容系统,甲板功能区包括甲板上功能区和甲板下功能区,燃料电池系统和超级电容系统共同为整个游艇供电,在不同工况下,分别有不同的供电组合方式。本发明整体由铝合金型材焊接而成,包括主船体、驾驶室在内;船体型线采用深V型双折角剖面,单体单挂机;整体质量较轻,有利于节能减排;以燃料电池和超级电容组成混合动力系统,搭配无轴环形推进器,整体上减少能量传递过程的损失,提高能量利用率;燃料电池供电较传统柴油机更加安静,无轴环形推进器可减少震动和噪声,节能环保的同时提高了游艇安静舒适的效果。

    一种新型氢能混动游艇
    6.
    实用新型

    公开(公告)号:CN214493267U

    公开(公告)日:2021-10-26

    申请号:CN202023242966.6

    申请日:2020-12-29

    Abstract: 本实用新型提供一种新型氢能混动游艇,包括:由首至尾依次设置的防撞舱、卫生储物间、甲板功能区和艉阱以及燃料电池系统和超级电容系统,甲板功能区包括甲板上功能区和甲板下功能区,燃料电池系统和超级电容系统共同为整个游艇供电,在不同工况下,分别有不同的供电组合方式。本实用新型整体由铝合金型材焊接而成,包括主船体、驾驶室在内;船体型线采用深V型双折角剖面,单体单挂机;整体质量较轻,有利于节能减排;以燃料电池和超级电容组成混合动力系统,搭配无轴环形推进器,整体上减少能量传递过程的损失,提高能量利用率;燃料电池供电较传统柴油机更加安静,无轴环形推进器可减少震动和噪声,节能环保的同时提高了游艇安静舒适的效果。

    一种无泵型朗肯循环与液态金属联合发电系统

    公开(公告)号:CN111237019B

    公开(公告)日:2024-09-20

    申请号:CN202010232365.2

    申请日:2020-03-28

    Abstract: 本发明公开了一种无泵型朗肯循环与液态金属联合发电系统,包括吸附‑朗肯循环发电循环模块和液态金属磁流体发电循环模块;所述吸附‑朗肯循环发电循环模块包括发电机、膨胀机、吸附床a和吸附床b和曝气管;所述液态金属磁流体发电循环模块由环形通道结构和液态金属组成。本发明采用吸附床交替工作代替工质循环泵,工质循环泵的输入功率最高可占膨胀机输出功率的45%,取消工质循环泵,降低了系统的本身的能量消耗,提高了系统的净输出功率。本发明利用吸附床的吸附过程降低吸附‑朗肯循环中膨胀机的出口压力,进一步提高了系统的净输出功率。本发明在环形通道结构里的液态金属温度更均衡,有利于液态金属的流动。

    一种基于纳米裂纹的纳流控芯片及其加工方法

    公开(公告)号:CN114433260B

    公开(公告)日:2024-04-16

    申请号:CN202210089959.1

    申请日:2022-01-25

    Abstract: 本发明提供一种基于纳米裂纹的纳流控芯片及其加工方法。本发明由聚二甲基硅氧烷通道层玻璃基底键合而成,聚二甲基硅氧烷通道层含有微米通道和至少一条纳米通道,纳米通道与微米通道相连,微米通道末端通过储液槽与外界连接,所述储液槽用于纳米流控芯片样品的加入和提取。本发明加工方法简单,可实现单根纳米通道或者多根纳米通道阵列的高效快速加工,且纳米通道的长度、位置、尺寸精确可控。解决了采用传统半导体加工工艺耗时长,成本高,操作复杂等问题。所加工的微纳流控芯片可用于基于纳流控技术的生物传感、化学分析、微纳能源收集等领域。

Patent Agency Ranking