-
公开(公告)号:CN118677136A
公开(公告)日:2024-09-20
申请号:CN202411148940.5
申请日:2024-08-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供一种磁通电机永磁体的磁极偏移控制方法及磁通电机,控制方法包括:获取磁通电机的永磁体的分组磁体极数和定子槽数,永磁体包括至少两个分组磁体,至少两个分组磁体沿磁通电机的周向均匀分布,每个分组磁体具有相同的层数;根据永磁体极数和定子槽数,得到单齿槽转矩跨度;根据单齿槽转矩跨度,得到第一层分组磁体的第一角度;根据单齿槽转矩跨度和永磁体层数,得到第二角度;按照第一角度控制第一层分组磁体进行正向偏移,各层分组磁体在第一层分组磁体基础上依次相对紧邻的上一层分组磁体反向偏移第二角度。本发明的方案能够减小磁通电机的齿槽转矩和转矩脉动,提高磁通电机的定位精度和稳定性。
-
公开(公告)号:CN118554715A
公开(公告)日:2024-08-27
申请号:CN202410477127.6
申请日:2024-04-19
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种模块化磁通切换型永磁旋转变压器,包括:定子单元模块以及1个位于定子单元模块外周的Pr极转子,所述的定子单元模块中至少包括1个S极定子单元模块以及1个N极定子单元模块,所述的S极定子单元模块与相邻的N极定子单元之间的硅钢齿相移限定为135度,并通过分布在硅钢齿中心线两侧,且角度相互对称的磁力线,使得S极定子单元和N极定子单元保持90度相位差,以在进一步降低旋转变压器的定子齿数的同时,减少了旋转变压器的体积,确保了其测量精度,并提升了系统的集成。
-
公开(公告)号:CN119903800A
公开(公告)日:2025-04-29
申请号:CN202411862157.5
申请日:2024-12-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F30/337
Abstract: 本发明公开了一种高速旋转变压器复矢量解调系统设计方法,包括:旋转变压器复矢量输出构建环节、旋转变压器电转速获取环节、复矢量幅值补偿环节以及复矢量幅值归一化环节;旋转变压器输出电压传递给旋转变压器复矢量输出构建环节,构建复矢量旋转变压器输出;将旋转变压器复矢量输出传递给旋转变压器电转速获取环节,获取旋转变压器电转速;将旋转变压器电转速进行复矢量幅值补偿,构建补偿后的旋转变压器激励共轭矢量;将输出复矢量与补偿后的激励共轭矢量传递给复矢量幅值归一化环节,通过复矢量幅值归一化环节获取包络线复矢量得到旋转变压器的输出正弦与余弦包络线。本发明在降低角度延迟与提高更新频率的同时也消除了2ωexc频率的误差。
-
公开(公告)号:CN118920729B
公开(公告)日:2025-01-03
申请号:CN202411396910.6
申请日:2024-10-09
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 深圳市赢锋智能技术有限公司
Abstract: 本申请提供了一种辐条型转子结构及永磁电机,辐条型转子结构包括一体式转子冲片和多个分体式转子冲片。一体式转子冲片包括中心孔和多个转子扇区,各转子扇区沿中心孔的圆周方向依次设置;分体式转子冲片沿中心孔的圆周方向彼此间隔地设置,利用分体式转子冲片的阻隔作用,改变永磁体端部产生的磁场路径,从而抑制了永磁体端部磁场的泄露。各分体式转子冲片与各转子扇区对应。在构建转子铁心时,一体式转子冲片与分体式转子冲片沿着转子的轴线方向交替叠放,逐层累积。一体式转子冲片和分体式转子冲片的外侧缘上均设有沿厚度方向延伸的凹槽,既能够削弱因分体式转子冲片导致的局部磁场畸变,又促进了磁力的均匀传递,进而降低转矩脉动的幅度。
-
公开(公告)号:CN118889934A
公开(公告)日:2024-11-01
申请号:CN202410777817.3
申请日:2024-06-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开一种电机控制方法、电路及其系统,属于永磁同步电机技术领域;一种电机控制方法,所述电机包括,定子,包括定子主体,所述定子主体为半球形,定子主体内表面均匀布置多个绕组线圈,绕组线圈沿X轴、Y轴、Z轴分别布置三组绕组,每组绕组通过全桥逆变电路驱动;转子,为球形结构,活动安装在定子空腔内,转子表面均匀分布着多对磁极;以对极永磁转子的中心O点的空间固定直角坐标系XOY;通过霍尔传感器检测转子的磁场变化并输出相应的电平信号;根据两个霍尔传感器的输出信号,判断转子的位置和旋转角度;通过控制定子的通电状态,产生与转子位置对应的旋转磁场,以实现对转子的精确控制;本公开通过霍尔传感器的输出信号形成闭环控制系统,实时监测转子的旋转状态并调整定子的电流输入,能够实现对转子运动的精确控制。
-
公开(公告)号:CN118889736A
公开(公告)日:2024-11-01
申请号:CN202410777821.X
申请日:2024-06-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H02K1/278 , H02K1/14 , H02K11/215
Abstract: 本发明公开一种永磁同步球形轮毂电机及其系统,属于永磁同步电机技术领域;定子,包括定子主体,所述定子主体为半球形,定子主体内表面均匀布置多个绕组线圈,绕组线圈沿X轴、Y轴、Z轴分别布置三组绕组,每组绕组通过全桥逆变电路驱动;转子,为球形结构,活动安装在定子空腔内,转子表面均匀分布着多对磁极;采用球形转子和三维正交排列的定子绕组,本发明的电机能够实现沿X轴、Y轴和Z轴的多自由度运动控制,适用于复杂运动需求的应用场景。
-
公开(公告)号:CN118523578B
公开(公告)日:2024-10-15
申请号:CN202410986605.6
申请日:2024-07-23
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H02K21/14 , H02K1/276 , H02K1/28 , H02K3/48 , H02K3/24 , H02K5/20 , H02K3/32 , H02K9/19 , H02K9/22
Abstract: 本发明提供一种高速永磁同步电机及护套参数确定方法,高速永磁同步电机包括:转轴;环绕所述转轴固定设置的具有预设厚度的永磁体;环绕所述永磁体固定连接的护套;环绕所述护套预留的气隙;环绕所述气隙设置的定子铁心;环绕所述定子铁心固定连接的机壳;其中,所述定子铁心设置有卡槽,围绕所述卡槽设置有环形绕组;在所述环形绕组的缝隙中穿插设置有轴向Z字型冷却水道;在所述环形绕组的表面设置有绝缘层;在所述定子铁心的卡槽内固定设置的热管;所述护套厚度为第一预设值。本发明的方案能够提高高速永磁同步电机的散热效率,保证高速永磁同步电机工作状态稳定。
-
公开(公告)号:CN118523578A
公开(公告)日:2024-08-20
申请号:CN202410986605.6
申请日:2024-07-23
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H02K21/14 , H02K1/276 , H02K1/28 , H02K3/48 , H02K3/24 , H02K5/20 , H02K3/32 , H02K9/19 , H02K9/22
Abstract: 本发明提供一种高速永磁同步电机及护套参数确定方法,高速永磁同步电机包括:转轴;环绕所述转轴固定设置的具有预设厚度的永磁体;环绕所述永磁体固定连接的护套;环绕所述护套预留的气隙;环绕所述气隙设置的定子铁心;环绕所述定子铁心固定连接的机壳;其中,所述定子铁心设置有卡槽,围绕所述卡槽设置有环形绕组;在所述环形绕组的缝隙中穿插设置有轴向Z字型冷却水道;在所述环形绕组的表面设置有绝缘层;在所述定子铁心的卡槽内固定设置的热管;所述护套厚度为第一预设值。本发明的方案能够提高高速永磁同步电机的散热效率,保证高速永磁同步电机工作状态稳定。
-
公开(公告)号:CN111682660A
公开(公告)日:2020-09-18
申请号:CN202010436488.8
申请日:2020-05-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本申请提供了一种磁通反向永磁电机,该磁通反向永磁电机包括定子和与定子配合的转子,定子齿的齿冠上沿定子的周向设有第一永磁体和铁磁体,转子槽内设有沿转子的周向布置的三个第二永磁体。在同一个转子槽内的三个第二永磁体中,位于中间的一个第二永磁体的充磁方向与第一永磁体的充磁方向相同,位于两侧的两个第二永磁体的充磁方向沿转子的周向且方向相反。本申请提供的磁通反向永磁电机,第一永磁体产生的磁场和第二永磁体产生的磁场分别经过转子齿和定子齿调制,磁路实现漏磁量减小,可使第一永磁体用量减半,且实现第一永磁体与第二永磁体总量相比传统磁通反向永磁电机的永磁体用量减少,提高永磁体利用率,进而提升输出转矩和功率密度。
-
公开(公告)号:CN120010242A
公开(公告)日:2025-05-16
申请号:CN202411841072.9
申请日:2024-12-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G05B13/04
Abstract: 本发明公开了一种改进的无观测器无差拍控制方法,包括:构建一个超局部模型,充分利用已知的反电动势项,并采用仅需上一个周期信息的电感提取算法;通过使d轴扰动收敛到零,准确提取电感。本发明实现了完全的无模型控制,完全不依赖任何电机参数,从而提高了预测电流控制的鲁棒性。
-
-
-
-
-
-
-
-
-