-
公开(公告)号:CN119785145A
公开(公告)日:2025-04-08
申请号:CN202411866799.2
申请日:2024-12-18
Applicant: 南宁桂电电子科技研究院有限公司 , 广西壮族自治区信息中心(广西壮族自治区大数据研究院) , 桂林电子科技大学
IPC: G06V10/774 , G06V10/764 , G06V10/82 , G06V10/26 , G06V10/44 , G06V10/54 , G06N3/094 , G06N3/0464 , G06N3/048
Abstract: 本发明公开了一种对抗样本构造方法,包括:S1、获取目标图像,对所述目标图像进行分割,获取分割掩码;S2、将所述目标图像输入至生成器中,获取当前全局对抗扰动;S3、基于所述目标图像,结合所述分割掩码和当前全局对抗扰动,获取当前对抗样本;S4、将所述当前对抗样本和目标图像输入至代理模型,获取图像总损失;S5、将所述图像总损失输入至所述生成器,结合所述目标图像,获取新的全局对抗扰动;S6、返回S3,直至获取当前最优对抗样本。本发明引入图像分割模块,识别出关键区域。其次,仅针对关键区域添加扰动,在较少扰动的情况下构造对抗样本。
-
公开(公告)号:CN118015617A
公开(公告)日:2024-05-10
申请号:CN202410146393.0
申请日:2024-02-01
Applicant: 桂林电子科技大学 , 南宁桂电电子科技研究院有限公司
IPC: G06V20/69 , G06V10/25 , G06V10/764 , G06V10/82 , G06V10/80 , G06V10/776 , G06N3/0464 , G06N3/045 , G06N3/0499 , G06N3/084
Abstract: 本发明公开了基于目标检测的乳腺癌病理图像有丝分裂细胞核识别方法,包括:将乳腺癌有丝分裂细胞核图像输入目标检测网络,筛选有丝分裂细胞核的候选框及所述候选框对应的第一置信度;对筛选后的候选框进行窗口重定位,过滤检测阶段产生的劣质假阳性,并重新定位有丝分裂细胞核的中心位置,获取过滤后的候选框及第二置信度;将过滤后的候选框输入分类网络,输出最终候选框及最终目标置信度,其中,最终目标置信度通过第二置信度和分类网络置信度加权获得。本发明通过在检测阶段之后加入窗口重定位模块,减少候选框边界周围的低质量预测,有利于产生更一致的检测结果。
-
公开(公告)号:CN116740124A
公开(公告)日:2023-09-12
申请号:CN202310655750.1
申请日:2023-06-05
Applicant: 桂林电子科技大学 , 南宁桂电电子科技研究院有限公司
Abstract: 本发明涉及小目标检测与多目标跟踪技术领域,具体涉及一种基于改进YOLOv8的车辆跟踪与车牌识别联合检测方法,将车辆检测跟踪与车牌识别融合在一个统一的系统中,通过以下步骤实现联合检测,首先采用改进YOLOv8算法对车辆与车牌进行检测,再使用基于匈牙利算法的BOT‑SORT跟踪算法进行车辆目标跟踪,同时使用LPRNet进行车牌识别,通过使用了可变形卷积操作代替标准卷积,可根据图像改变感受野大小,同时添加了MHSA注意力网络,在保证轻量化的同时,大大提升了物体检测精度,同时本发明将车辆多目标跟踪和车牌识别集成在一个系统中,使用方便,容易部署在边缘设备中。
-
公开(公告)号:CN117851659A
公开(公告)日:2024-04-09
申请号:CN202410021902.7
申请日:2024-01-08
Applicant: 桂林电子科技大学 , 南宁桂电电子科技研究院有限公司
IPC: G06F16/953 , G06F16/903 , G06N3/094 , G06N3/0455 , G06N3/047
Abstract: 本发明涉及无监督跨模态哈希检索技术领域,具体涉及一种自适应增强对抗哈希无监督跨模态检索方法,包括分别对图像和文本数据进行特征提取,得到原始图像特征和原始文本特征;设计文本生成器来拟合原始文本特征的文本数据分布,随机生成和图像特征维度一致的假数据,最后使用假数据训练图像鉴别器,并生成特征矩阵;设计特征矩阵映射为哈希码矩阵,并量化映射过程信息的损失,得到信息量损失矩阵;将信息量损失矩阵嵌入多模态相似性矩阵的构造中,得到相似性度量矩阵,再利用相似性度量矩阵实现图像和文本原始特征空间与汉明空间的语义对齐,经过多轮训练,得到最优的跨模态检索模型,使用其进行检索,得到检索结果。
-
公开(公告)号:CN118097660A
公开(公告)日:2024-05-28
申请号:CN202410044725.4
申请日:2024-01-11
Applicant: 桂林电子科技大学 , 南宁桂电电子科技研究院有限公司
IPC: G06V20/69 , G06V10/44 , G06V10/74 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/048 , G06N3/084 , G06N3/092
Abstract: 本发明公开了一种基于相似注意力机制的乳腺癌细胞核分割方法及系统,所述方法包括:1)采用了传统数据增强方法来增加数据的多样性;2)采用了相似注意力机制以加强细节特征提取;通过膨胀卷积来扩大感受野并设置锯齿状膨胀系数消除空洞效应;使用密集连接和多分辨率跳跃连接实现层与层之间的连接和多尺度融合;添加Dropout层防止过拟合;3)在对乳腺癌细胞核精确分割的同时,对其进行细胞核计数、形态提取,为临床诊断乳腺癌分级提供基础;本发明能够精确分割乳腺癌细胞核,解决乳腺癌细胞核形态多样,细胞核边缘粘连严重难以分割等问题,可以有效地辅助医生进行乳腺癌的早期诊断和治疗。
-
公开(公告)号:CN117934491A
公开(公告)日:2024-04-26
申请号:CN202410110644.X
申请日:2024-01-26
Applicant: 桂林电子科技大学 , 南宁桂电电子科技研究院有限公司
IPC: G06T7/10 , G06V10/764 , G06V10/762 , G06V10/778
Abstract: 本发明涉及医学图像分割技术领域,特别是涉及一种基于半监督深度学习的腺体分割方法,包括:获取待分割腺体图像;将所述待分割腺体图像输入预设的分割模型中,获取分割预测图,其中,所述分割模型基于训练集训练获得,所述训练集包括有标注的结直肠癌腺体图像和乳腺癌腺体图像,无标注的结直肠癌腺体图像和乳腺癌腺体图像,所述分割模型包括教师模型、学生模型和教师助理模型,所述教师模型、学生模型和教师助理模型的主干网络均采用DeepLabv3+网络构建。本发明能够有效地提升结直肠癌和乳腺癌腺体图像的分割精度。
-
公开(公告)号:CN116740493A
公开(公告)日:2023-09-12
申请号:CN202310653375.7
申请日:2023-06-05
Applicant: 桂林电子科技大学 , 南宁桂电电子科技研究院有限公司
IPC: G06V10/774 , G06V10/82 , G06V10/40 , G06V10/25 , G06V10/764 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明涉及目标检测技术领域,具体涉及一种基于语义关系的多尺度无锚框目标检测方法,包括以下步骤:首先进行原始图片目标特征提取,再目标间语义关系构建,最后通过目标分类、中心度计算和位置回归,输出检测结果;本发明不同于现有方法由于锚框数量大而需要大量的计算资源,摒弃了传统anchor‑based方法需要预先根据目标尺寸设计各种超参数的复杂过程,减轻了计算资源的开销,更加易于算法模型的落地,且训练时间更短。进一步的,由于关系模块的引入,借鉴了自注意力机制,提高了小目标乃至是受遮挡物体的检测精度,一定程度上提高了方法的泛化能力。
-
公开(公告)号:CN117786421A
公开(公告)日:2024-03-29
申请号:CN202311760832.9
申请日:2023-12-20
Applicant: 桂林电子科技大学 , 南宁桂电电子科技研究院有限公司
IPC: G06F18/22 , G06F18/214 , G06F18/21 , G06N20/00
Abstract: 本发明涉及基于测试集结果的相似度计算和模型权重分配方法,包括:S1、分别构建客户端数据集和全局测试集;S2、中央服务器初始化初始模型并分发给客户端;S3、客户端基于客户端数据集训练客户端模型并发送至中央服务器;S4、中央服务器基于全局测试集对训练后的客户端模型进行测试,获取软分类结果并计算客户端模型之间的相似度,构建相关性矩阵;S5、中央服务器基于相关性矩阵,为客户端选择拟聚合模型并计算聚合权重,构建个性化模型;S6、中央服务器将个性化模型发送至对应客户端进行检验,若个性化模型收敛,或达到预设训练轮次,则停止;否则返回S3,继续训练,直到达到预设训练截止条件,本发明能提升客户端模型的泛化能力。
-
公开(公告)号:CN116895098A
公开(公告)日:2023-10-17
申请号:CN202310891520.5
申请日:2023-07-20
Applicant: 桂林电子科技大学 , 南宁桂电电子科技研究院有限公司
Abstract: 本发明公开了一种基于深度学习和隐私保护的视频人体动作识别系统与方法,所述系统包括依次连接的视频图像处理模块、人体检测模块、人体骨骼关键点提取模块、基于骨骼关键点的动作识别模块和输出模块,所述方法为从监控视频数据中提取关键帧图片并进行预处理、得到人体区域子图、提取模型得到人物动作信息、对连续累计的人物动作信息进行编码融合并进行动作预测、将动作预测结果进行输出,并对人体进行隐私处理。这种系统成本低、组网方便、便于应用和推广,这种方法在识别行人动作的同时能隐私、能够同时完成人体检测、动作识别、隐私保护这三个任务。
-
公开(公告)号:CN116756363A
公开(公告)日:2023-09-15
申请号:CN202310657100.0
申请日:2023-06-05
Applicant: 桂林电子科技大学 , 南宁桂电电子科技研究院有限公司
IPC: G06F16/583 , G06F16/383 , G06F18/213 , G06F18/22 , G06F18/25 , G06F18/214
Abstract: 本发明涉及跨模态检索技术领域,具体涉及一种由信息量引导的强相关性无监督跨模态检索方法,通过以下步骤实现:首先提取图像局部特征和全局特征,以及文本特征;对图像局部特征和全局特征进行增强;再对增强后的局部特征进行正则化处理;然后使用图像特征融合网络对图像全局特征和局部特征进行正交融合;接着使用多模态融合网络对图像特征和文本特征根据不同模态特征信息量转换比例原则进行融合;最后将不同模态特征映射成哈希码,利用汉明距离进行相似性排序,从而得出检索结果。本发明侧重于对数据特征的增强和融合,能获取更多的语义信息,提高了检索效率。
-
-
-
-
-
-
-
-
-