-
公开(公告)号:CN106502811A
公开(公告)日:2017-03-15
申请号:CN201610891815.2
申请日:2016-10-12
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: G06F11/07
Abstract: 本发明涉及一种1553B总线通信故障处理方法,针对1553B总线接口芯片受到干扰后工作异常不能自动恢复总线通信的故障,通过定时监测1553B总线接口芯片重要寄存器的值,判断芯片工作状态实现故障的检测;当检测到其值与初始值不一致时,重新初始化芯片寄存器及1553B总线命令字堆栈指针变量,使其进入期望的工作模式,实现故障的恢复,提高系统的可靠性及抗干扰能力,本发明巧妙设计故障检测流程,针对1553B总线接口芯片中配置寄存器不同的故障情况,进行不同的处理,在提高故障处理准确率的同时,提高了故障处理效率,并节省了程序和时间。
-
公开(公告)号:CN106411206A
公开(公告)日:2017-02-15
申请号:CN201610839682.4
申请日:2016-09-21
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
CPC classification number: H02P21/00 , H02P25/026
Abstract: 一种主从式机电伺服协同运动控制系统,涉及航天推力矢量控制机电伺服应用领域;该系统集合控制系统总线指令、主作动器线位移反馈,从作动器线位移反馈等信号,根据喷管摆动角度,实时计算主从两台作动器对应的伸缩长度和主从运动轨迹的加速因子和加加速度因子,实现主从作动器的实时运动轨迹规划,实时输出主作动器指令信号,主从伺服控制驱动器通过电机空间矢量控制算法完成对弹上直流电源的逆变控制,伺服电机带动机电传动机构对负载做功,以完成推力矢量控制的目的,实现了主从协同严格实现同步控制的特点,且基础技术较成熟,易实现,实现系统高度集成和协同运动控制,进而解决采用两个通道独立控制方法引起喷管超摆进而造成喷管结构损伤的技术问题。
-
公开(公告)号:CN105182847A
公开(公告)日:2015-12-23
申请号:CN201510536440.3
申请日:2015-08-27
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: G05B19/042
CPC classification number: G05B19/0421 , G05B2219/25032 , G05B2219/25232
Abstract: 一种应用于运动控制系统的高可靠双冗余CAN总线通信方法,(1)将主控制器与各关节控制器之间采用两条CAN总线A、B进行通信;(2)初始化两条CAN总线;(3)主控制器在控制周期的指令发送时段分时将各个关节控制器的关节位置指令通过A总线和B总线分别发送至各个关节控制器,发送完成后向A总线和B总线发送广播指令;(4)各个关节控制器通过查询A、B总线接收关节位置指令消息,并将先接收到的指令消息进行解析并保存;(5)各个关节控制器通过查询A、B总线接收广播指令,接收到广播指令后同时根据解析的指令消息进行运动,并采集当前的状态信息,在定时中断中分时将各自的状态信息发送给主控制器;下一控制周期从步骤(3)开始执行。
-
公开(公告)号:CN105302075A
公开(公告)日:2016-02-03
申请号:CN201510595826.1
申请日:2015-09-17
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: G05B19/414
CPC classification number: G05B19/414
Abstract: 本发明涉及一种基于1553B总线的数字伺服控制器参数在线装订方法,首先制定参数在线装订通信协议,上位机将需要在线装订的参数按照协议生成消息链,通过1553B总线发送至伺服控制器,伺服控制器接收消息并返回消息至上位机;本发明方法对于参数更改,无需进行软件升级和配置管理既可以完成,提高了软件生产效率,增强了软件的适应性。本发明描述了一种新型的基于1553B总线的参数在线装订方法,可以提高软件产品的适应性,降低软件维护工作量,提高可靠性,为伺服产品的批产解决了实际问题。该方法已经在多个重要型号中应用,大大推动了数字伺服控制器的发展。
-
公开(公告)号:CN108073087B
公开(公告)日:2020-08-28
申请号:CN201711046357.3
申请日:2017-10-31
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: G05B17/02
Abstract: 本发明属于飞行器控制与导航技术领域,具体涉及一种多学科综合仿真平台环境下的机电伺服系统控制算法,包括:步骤一:建立电机仿真模型及电机瞬态仿真计算;步骤二:建立机电伺服系统仿真模型;步骤三:计算机电伺服系统频率特性:步骤四:对比验证。本发明提出的基于机电伺服系统的仿真技术可扩展至所有机电伺服系统中,不需要任何实物和仪器,便能完成伺服系统各单机在设计之前进行不同条件下的可行性方案验证。对方案论证,控制策略、控制参数的确定具有重要的工程指导意义。
-
公开(公告)号:CN106326122B
公开(公告)日:2018-08-31
申请号:CN201610710772.3
申请日:2016-08-23
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: G06F11/36
Abstract: 一种软件单元测试用例管理系统,包括用例自动生成模块、基本信息管理模块、检索匹配模块、用例管理模块,用例自动生成模块将实现数据导入、数据分析、数据编辑和数据导出功能,生成批量测试用例TCF文件导入测试工具被自动执行,用例管理模块将测试用例和所述基本信息进行匹配,形成用例管理模块中的过程测试用例和典型测试用例,形成测试用例集进行管理,便于对测试用例的重新编辑、复用;检索匹配模块可以快速高效的检索到已完成的测试用例;针对嵌入式伺服软件代码量大、相似度高的特点,本发明自动化程度高、测试用例全面、规范,不仅提高了单元测试效率和测试质量,同时也提高了对测试用例的复用率,节省人力成本。
-
公开(公告)号:CN106411206B
公开(公告)日:2018-08-31
申请号:CN201610839682.4
申请日:2016-09-21
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
Abstract: 一种主从式机电伺服协同运动控制系统,涉及航天推力矢量控制机电伺服应用领域;该系统集合控制系统总线指令、主作动器线位移反馈,从作动器线位移反馈等信号,根据喷管摆动角度,实时计算主从两台作动器对应的伸缩长度和主从运动轨迹的加速因子和加加速度因子,实现主从作动器的实时运动轨迹规划,实时输出主作动器指令信号,主从伺服控制驱动器通过电机空间矢量控制算法完成对弹上直流电源的逆变控制,伺服电机带动机电传动机构对负载做功,以完成推力矢量控制的目的,实现了主从协同严格实现同步控制的特点,且基础技术较成熟,易实现,实现系统高度集成和协同运动控制,进而解决采用两个通道独立控制方法引起喷管超摆进而造成喷管结构损伤的技术问题。
-
公开(公告)号:CN106326122A
公开(公告)日:2017-01-11
申请号:CN201610710772.3
申请日:2016-08-23
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: G06F11/36
Abstract: 一种软件单元测试用例管理系统,包括用例自动生成模块、基本信息管理模块、检索匹配模块、用例管理模块,用例自动生成模块将实现数据导入、数据分析、数据编辑和数据导出功能,生成批量测试用例TCF文件导入测试工具被自动执行,用例管理模块将测试用例和所述基本信息进行匹配,形成用例管理模块中的过程测试用例和典型测试用例,形成测试用例集进行管理,便于对测试用例的重新编辑、复用;检索匹配模块可以快速高效的检索到已完成的测试用例;针对嵌入式伺服软件代码量大、相似度高的特点,本发明自动化程度高、测试用例全面、规范,不仅提高了单元测试效率和测试质量,同时也提高了对测试用例的复用率,节省人力成本。
-
公开(公告)号:CN106502811B
公开(公告)日:2020-03-24
申请号:CN201610891815.2
申请日:2016-10-12
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: G06F11/07
Abstract: 本发明涉及一种1553B总线通信故障处理方法,针对1553B总线接口芯片受到干扰后工作异常不能自动恢复总线通信的故障,通过定时监测1553B总线接口芯片重要寄存器的值,判断芯片工作状态实现故障的检测;当检测到其值与初始值不一致时,重新初始化芯片寄存器及1553B总线命令字堆栈指针变量,使其进入期望的工作模式,实现故障的恢复,提高系统的可靠性及抗干扰能力,本发明巧妙设计故障检测流程,针对1553B总线接口芯片中配置寄存器不同的故障情况,进行不同的处理,在提高故障处理准确率的同时,提高了故障处理效率,并节省了程序和时间。
-
公开(公告)号:CN108073087A
公开(公告)日:2018-05-25
申请号:CN201711046357.3
申请日:2017-10-31
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: G05B17/02
Abstract: 本发明属于飞行器控制与导航技术领域,具体涉及一种多学科综合仿真平台环境下的机电伺服系统控制算法,包括:步骤一:建立电机仿真模型及电机瞬态仿真计算;步骤二:建立机电伺服系统仿真模型;步骤三:计算机电伺服系统频率特性:步骤四:对比验证。本发明提出的基于机电伺服系统的仿真技术可扩展至所有机电伺服系统中,不需要任何实物和仪器,便能完成伺服系统各单机在设计之前进行不同条件下的可行性方案验证。对方案论证,控制策略、控制参数的确定具有重要的工程指导意义。
-
-
-
-
-
-
-
-
-