-
公开(公告)号:CN108548603A
公开(公告)日:2018-09-18
申请号:CN201810326802.X
申请日:2018-04-12
Applicant: 中国科学院光电技术研究所
IPC: G01J4/00
Abstract: 本发明公开了一种非共轴四通道偏振成像方法及系统。针对当前偏振成像系统能量利用率低,成像分辨率不高,难以对远距离目标和微光环境下目标成像的缺点,提出并实现了多通道采集四个不同检偏角度的偏振成像方法,有效的提升了偏振成像分辨率和成像质量。所述偏振成像方法中的四通道的具体角度和基线长度可针对不同环境与不同距离下的目标物进行调节,达到提升目标对比度的目的。
-
公开(公告)号:CN103235545A
公开(公告)日:2013-08-07
申请号:CN201310137967.X
申请日:2013-04-19
Applicant: 中国科学院光电技术研究所
IPC: G05B19/048
CPC classification number: Y02P90/265
Abstract: 本发明一种光电跟踪系统的仿真测试方法及装置,通过代码自动生成环境,由跟踪控制算法的Simulink模型生成实现该算法的C代码,并下载到光电跟踪系统的控制器中;在视景仿真计算机进行光电跟踪系统的虚拟场景仿真,实时渲染出需求的虚拟场景;视景仿真计算机将虚拟场景中的目标脱靶量信息传送给控制器,控制器根据脱靶量信息驱动光电跟踪系统执行机构对虚拟场景中的目标跟踪,并将光电跟踪系统的视轴姿态返回视景仿真计算机,视景仿真计算机根据光电跟踪系统的视轴姿态更新虚拟场景中观察点的姿态并产生新的目标脱靶量信息,重复以上过程仿真出光电跟踪系统的跟踪过程,所得跟踪数据用来对跟踪控制算法进行测试、分析与设计。
-
公开(公告)号:CN108469842B
公开(公告)日:2024-10-18
申请号:CN201810223704.3
申请日:2018-03-19
Applicant: 中国科学院光电技术研究所
IPC: G05D3/12
Abstract: 本发明提供一种运动平台复合轴光电跟踪系统精稳定扰动解耦方法,主要用于解耦粗跟踪机架陀螺信息中的目标运动信号和扰动信号,估计出机架粗稳定和粗跟踪共同作用之后的残余扰动量,利用跟踪镜抑制解耦出来的残余扰动。跟踪机架包含粗跟踪和粗稳定回路,建立粗稳定回路模型为GM(s)。将粗跟踪回路控制量同时作为粗稳定回路和其模型GM(s)的输入,将二者输出相减得到粗稳定剩余扰动df(s),再将df(s)乘以粗跟踪误差传递函数W(s),得到粗稳定和粗跟踪作用之后的剩余扰动d2(s)。将解耦出来的d2(s)前馈控制到跟踪镜就构成了精稳定,从而提高系统扰动抑制能力。本发明不需要增加额外的传感器,简单有效,工程实现容易。
-
公开(公告)号:CN108919836B
公开(公告)日:2021-08-13
申请号:CN201810728396.X
申请日:2018-07-05
Applicant: 中国科学院光电技术研究所
Abstract: 本发明提供一种运动平台光电跟踪系统全频段扰动解耦方法,主要用于解耦跟踪机架陀螺信号中的目标运动信息和扰动信息,估计出粗稳定之后剩余的全频段扰动信息。在跟踪机架方位轴和俯仰轴上分别安装角速率陀螺A和E,机架速度回路采用陀螺反馈闭环构成粗稳定,整个粗稳定回路的模型记为将目标角速度同时作为机架粗稳定回路的输入和其模型的输入,二者输出之差再乘以低通滤波器得到扰动低频部分d1(s);将陀螺测量信号乘以高通滤波器得到扰动高频部分d2(s);将d1(s)和d2(s)相加就得到粗稳定抑制之后的全频段扰动且不包含目标运动信息。本发明不用增加额外的传感器,简单有效,工程容易实现。
-
公开(公告)号:CN104266663A
公开(公告)日:2015-01-07
申请号:CN201410507745.7
申请日:2014-09-28
Applicant: 中国科学院光电技术研究所
CPC classification number: G01C21/18
Abstract: 本发明提供一种运动平台光电跟踪系统二级稳定扰动解耦方法,主要用于解耦跟踪机架陀螺信息中的跟踪信号和扰动信号,估计出机架粗稳定剩余扰动量,利用跟踪镜抑制解耦出来的扰动,构成二级稳定,实现高精度视轴稳定。具体涉及到利用内模原理来解耦扰动。跟踪机架用陀螺反馈闭环构成粗稳定,整个粗稳定回路的模型记为将目标角速度同时作为机架粗稳定回路的输入和其模型的输入,二者输出之差df(s)就是粗稳定的残余扰动量。将解耦出来的df(s)前馈控制到跟踪镜就构成了二级稳定。跟踪机架采用陀螺闭环反馈不仅能实现粗稳定,同时可以减小由机架特性变化对的影响,从而保证扰动解耦的精度。本发明简单有效,工程实现容易。
-
公开(公告)号:CN106227035B
公开(公告)日:2019-04-02
申请号:CN201610801122.X
申请日:2016-09-05
Applicant: 中国科学院光电技术研究所
IPC: G05B13/02
Abstract: 本发明公开一种运动平台小型光电系统高精度跟瞄控制方法。该控制方法利用一个二维转台和一块快速倾斜镜实现高精度跟瞄。该控制方法是利用粗图像探测器信息和陀螺信息同时实现二维转台和快速倾斜镜的控制。具体控制方式为:二维转台由角速率陀螺反馈闭环构成速度回路,由图像探测器脱靶量反馈闭环构成粗跟踪回路;同时,将图像传感器脱靶量和陀螺信号融合,得到二维转台跟踪残差和扰动抑制残差,作为快速倾斜镜的输入,用快速倾斜镜再次校正这两部分误差,获得高精度跟瞄。本发明所述控制方法简化系统组成,快速倾斜镜充分利用粗跟踪图像传感器和陀螺信息,实现高精度的光束控制,具有结构简单、稳定可靠,工程容易实现。
-
公开(公告)号:CN106154837B
公开(公告)日:2019-03-12
申请号:CN201610801173.2
申请日:2016-09-05
Applicant: 中国科学院光电技术研究所
IPC: G05B13/04
Abstract: 本发明公开一种运动平台光电系统高精度视轴稳定控制方法,在跟踪机架方位轴上安装有方位速角率陀螺A,在俯仰轴上安装有俯仰角速率陀螺E,机架采用A、E陀螺反馈闭环实现粗稳定,主要抑制低频扰动;对A、E陀螺信号滤波解耦跟踪信息和扰动信息,得到粗稳定剩余的高频扰动量,利用跟踪快反镜构成精稳定,主要抑制中高频频段扰动;精稳定控制采用前馈控制方法,并对跟踪镜采用位置传感器闭环,将位置闭环整体当作扰动前馈的被控对象,减小因跟踪镜特性变化对扰动前馈的影响。本发明充分利用机架陀螺信息,实现粗稳定加精稳定的复合稳定控制方式,有效的扩展扰动抑制带宽,提高视轴稳定精度,并且结构简单、稳定可靠、工程实现容易。
-
公开(公告)号:CN108919836A
公开(公告)日:2018-11-30
申请号:CN201810728396.X
申请日:2018-07-05
Applicant: 中国科学院光电技术研究所
Abstract: 本发明提供一种运动平台光电跟踪系统全频段扰动解耦方法,主要用于解耦跟踪机架陀螺信号中的目标运动信息和扰动信息,估计出粗稳定之后剩余的全频段扰动信息。在跟踪机架方位轴和俯仰轴上分别安装角速率陀螺A和E,机架速度回路采用陀螺反馈闭环构成粗稳定,整个粗稳定回路的模型记为 将目标角速度同时作为机架粗稳定回路的输入和其模型 的输入,二者输出之差再乘以低通滤波器得到扰动低频部分d1(s);将陀螺测量信号乘以高通滤波器得到扰动高频部分d2(s);将d1(s)和d2(s)相加就得到粗稳定抑制之后的全频段扰动且不包含目标运动信息。本发明不用增加额外的传感器,简单有效,工程容易实现。
-
公开(公告)号:CN108469842A
公开(公告)日:2018-08-31
申请号:CN201810223704.3
申请日:2018-03-19
Applicant: 中国科学院光电技术研究所
IPC: G05D3/12
Abstract: 本发明提供一种运动平台复合轴光电跟踪系统精稳定扰动解耦方法,主要用于解耦粗跟踪机架陀螺信息中的目标运动信号和扰动信号,估计出机架粗稳定和粗跟踪共同作用之后的残余扰动量,利用跟踪镜抑制解耦出来的残余扰动。跟踪机架包含粗跟踪和粗稳定回路,建立粗稳定回路模型为GM(s)。将粗跟踪回路控制量同时作为粗稳定回路和其模型GM(s)的输入,将二者输出相减得到粗稳定剩余扰动df(s),再将df(s)乘以粗跟踪误差传递函数W(s),得到粗稳定和粗跟踪作用之后的剩余扰动d2(s)。将解耦出来的d2(s)前馈控制到跟踪镜就构成了精稳定,从而提高系统扰动抑制能力。本发明不需要增加额外的传感器,简单有效,工程实现容易。
-
公开(公告)号:CN106227035A
公开(公告)日:2016-12-14
申请号:CN201610801122.X
申请日:2016-09-05
Applicant: 中国科学院光电技术研究所
IPC: G05B13/02
CPC classification number: G05B13/024
Abstract: 本发明公开一种运动平台小型光电系统高精度跟瞄控制方法。该控制方法利用一个二维转台和一块快速倾斜镜实现高精度跟瞄。该控制方法是利用粗图像探测器信息和陀螺信息同时实现二维转台和快速倾斜镜的控制。具体控制方式为:二维转台由角速率陀螺反馈闭环构成速度回路,由图像探测器脱靶量反馈闭环构成粗跟踪回路;同时,将图像传感器脱靶量和陀螺信号融合,得到二维转台跟踪残差和扰动抑制残差,作为快速倾斜镜的输入,用快速倾斜镜再次校正这两部分误差,获得高精度跟瞄。本发明所述控制方法简化系统组成,快速倾斜镜充分利用粗跟踪图像传感器和陀螺信息,实现高精度的光束控制,具有结构简单、稳定可靠,工程容易实现。
-
-
-
-
-
-
-
-
-