-
公开(公告)号:CN115056881B
公开(公告)日:2024-12-20
申请号:CN202210448012.5
申请日:2022-04-26
Applicant: 中国北方车辆研究所
IPC: B62D57/032 , B60L50/50 , B60L50/60
Abstract: 本发明涉及一种集成仿生躯干的电液混动四足机器人,其特征在于,包括:液压腿足、前后摆电机、液压泵、侧展液压缸、液压阀、电池、机身液压缸、节点盒、整机主控、陀螺仪、散热器、机架和机身铰链机构;该机器人动力源采用电池进行能源供给,关节执行器既包含了液压执行器又包含了电机执行器,在仿生设计上,增加机器人腰部两个关节自由度,共14自由度配置。本发明既继承了液压驱动的优点,同时兼具了电驱系统噪音低、可靠性高、维护维修方便的优点,整机14自由度的配置有利于机器人高速机动运动控制。
-
公开(公告)号:CN114879711B
公开(公告)日:2024-05-28
申请号:CN202210562562.X
申请日:2022-05-23
Applicant: 中国北方车辆研究所
IPC: G05D1/49 , B62D57/032 , G05D109/12
Abstract: 本发明涉及一种腿足式仿生机器人的模块化运动控制系统,属于腿足式仿生机器人技术领域。本发明包括几何和质量特性模块、足尖轨迹规划模块、相序步态规划模块、单腿控制模块和力位PD控制模块,其中单腿控制模块包括正逆运动学计算模块、动力学模块等。本发明通过对运动控制的功能性划分,并对划分的功能模块化进行开发,整体的非强耦合性集成,实现了腿足式仿生机器人运动控制软件自顶向下规划控制、单点开发、模块间集成和系统的协同分层研发及测试、松耦合和流程化的运动协作的高效、高可靠性的研发,提高了腿足式仿生机器人运动控制软件开发和测试效率。
-
公开(公告)号:CN107065907A
公开(公告)日:2017-08-18
申请号:CN201710244823.2
申请日:2017-04-14
Applicant: 中国北方车辆研究所
IPC: G05D1/08
CPC classification number: G05D1/0891
Abstract: 本发明涉及一种规划四足机器人足端摆动轨迹的方法,其包括:根据足端的摆动跨度和摆动相的持续时间,设计足端摆动过程中的曲线端点状态参数;拟合足端摆动轨迹。本发明提供的足端摆动轨迹规划方法,在抬腿阶段具有向后向上的运动趋势有效实现避障功能;在迈腿方向具有向前向上的运动趋势,可以很好的实现越障功能;而且足端摆动轨迹参数可以实时调整,能够灵活适应地形,提高了四足机器人在复杂崎岖地形上的通过能力。
-
公开(公告)号:CN114564010B
公开(公告)日:2024-10-22
申请号:CN202210133403.8
申请日:2022-02-11
Applicant: 中国北方车辆研究所
Inventor: 许鹏 , 苏波 , 江磊 , 蒋云峰 , 党睿娜 , 姚其昌 , 许威 , 王志瑞 , 慕林栋 , 梁振杰 , 汪建兵 , 邢伯阳 , 刘宇飞 , 郭亮 , 邱天奇 , 赵建新 , 邓秦丹 , 闫瞳 , 侯茂新 , 杨超宁
IPC: G05D1/43 , G05D1/644 , G05D109/12
Abstract: 本发明提供一种双轮足机器人单边越障控制方法,用于解决由于复杂建模方式所导致的双轮足机器人单边越障控制方式复杂的问题。首先,建立含有机器人虚拟腿姿态角度、虚拟腿姿态角速度、机体偏航姿态角度、机体偏航姿态角速度、机体前向位移,以及机体前向线速度六个状态量的双轮足简化动力学模型,并进行线性化、离散化处理;其次针对离散的虚拟腿长度进行状态反馈矩阵元素的多项式插值,采用卡尔曼滤波器实现各状态观测,利用线性二次型调节器进行全状态反馈,实现状态反馈平衡控制,最后,对支撑腿进行侧倾角姿态补偿,通过支撑腿运动学逆解产生髋部关节角度和膝关节角度,实现单边越障的姿态控制,该方法简单易实现,且控制效果较好。
-
公开(公告)号:CN115056881A
公开(公告)日:2022-09-16
申请号:CN202210448012.5
申请日:2022-04-26
Applicant: 中国北方车辆研究所
IPC: B62D57/032 , B60L50/50 , B60L50/60
Abstract: 本发明涉及一种集成仿生躯干的电液混动四足机器人,其特征在于,包括:液压腿足、前后摆电机、液压泵、侧展液压缸、液压阀、电池、机身液压缸、节点盒、整机主控、陀螺仪、散热器、机架和机身铰链机构;该机器人动力源采用电池进行能源供给,关节执行器既包含了液压执行器又包含了电机执行器,在仿生设计上,增加机器人腰部两个关节自由度,共14自由度配置。本发明既继承了液压驱动的优点,同时兼具了电驱系统噪音低、可靠性高、维护维修方便的优点,整机14自由度的配置有利于机器人高速机动运动控制。
-
公开(公告)号:CN114578836B
公开(公告)日:2024-06-25
申请号:CN202210127357.0
申请日:2022-02-11
Applicant: 中国北方车辆研究所
Inventor: 许鹏 , 苏波 , 江磊 , 姚其昌 , 党睿娜 , 许威 , 蒋云峰 , 王志瑞 , 慕林栋 , 梁振杰 , 汪建兵 , 邢伯阳 , 刘宇飞 , 郭亮 , 邱天奇 , 赵建新 , 邓秦丹 , 闫瞳 , 侯茂新 , 杨超宁
IPC: G05D1/49 , G05D109/12
Abstract: 本发明提出一种双轮足机器人跳跃控制方法,用于解决由于复杂建模方式所导致的双轮足机器人跳跃控制方式复杂的问题。本发明以虚拟腿为研究对象建立双轮足简化动力学模型,将其作为控制的模型基础,通过控制轮子的驱动力矩,实现机器人可变虚拟腿长度下的平衡控制;设计虚拟腿足的z方向运动轨迹,通过腿部逆运动学计算关系,由计算得到的虚拟腿足运动轨迹得到每个支撑腿的足运动轨迹,再计算每个关节的角度,进而通过控制关节角度实现弹跳控制;计算沿驱动轮前进方向的水平弹跳作用力补偿,用于平衡弹跳时由于驱动轮与地面的冲击产生的x方向的扰动,与平衡控制共同作用,实现双轮足机器人跳跃稳定控制,该方法简单易实现,且控制效果好。
-
公开(公告)号:CN115056882A
公开(公告)日:2022-09-16
申请号:CN202210448946.9
申请日:2022-04-26
Applicant: 中国北方车辆研究所
IPC: B62D57/032 , B60K17/04 , B60L50/00
Abstract: 本发明涉及一种三自由度仿生腿足结构及应用其的四足机器人,三自由度仿生腿足结构包括大腿总装、小腿总装、前摆关节电机和髋部外展关节电机,主要利用传动机构将膝关节电机也集成在机器人的髋部位置,以减少腿部总成运动时产生的转动惯量,提高机器人机动性能。现有技术中最为常用的就是利用平行四边形或反平行四边形机构传递膝关节电机驱动小腿的动力,而带传动比起多连杆传动具有质量轻、转动惯量小、无死点、传动比稳定、噪音低、可靠性高、对材料没有刚度要求等优点,且同步带具有一定吸振减震和抗冲击的能力,因此带传动可以大大减小对关节电机的性能要求和使用负担,提高机器人整机可靠性能。
-
公开(公告)号:CN114987645A
公开(公告)日:2022-09-02
申请号:CN202210448928.0
申请日:2022-04-26
Applicant: 中国北方车辆研究所
IPC: B62D57/032 , B60K17/22 , B60L50/00 , B60K17/04
Abstract: 本发明涉及一种轴传动的三自由度仿生腿,包括前摆关节电机总成、侧展关节电机总成、膝关节电机总成、大腿总成以及小腿总成。本发明利用轴传动机构将膝关节电机总成上移至大腿上部,通过传动轴与锥齿轮控制膝关节转角,提高了控制精度与传动效率,减小了腿部转动惯量。侧展关节电机总成从机身内部外移至大腿上部,节约了足式机器人机身内部空间,提高了机械腿的机动性能。解决现有足式机器人机械腿转动惯量大、控制精度低、机身空间小的问题。
-
公开(公告)号:CN114879711A
公开(公告)日:2022-08-09
申请号:CN202210562562.X
申请日:2022-05-23
Applicant: 中国北方车辆研究所
IPC: G05D1/08 , B62D57/032
Abstract: 本发明涉及一种腿足式仿生机器人的模块化运动控制系统,属于腿足式仿生机器人技术领域。本发明包括几何和质量特性模块、足尖轨迹规划模块、相序步态规划模块、单腿控制模块和力位PD控制模块,其中单腿控制模块包括正逆运动学计算模块、动力学模块等。本发明通过对运动控制的功能性划分,并对划分的功能模块化进行开发,整体的非强耦合性集成,实现了腿足式仿生机器人运动控制软件自顶向下规划控制、单点开发、模块间集成和系统的协同分层研发及测试、松耦合和流程化的运动协作的高效、高可靠性的研发,提高了腿足式仿生机器人运动控制软件开发和测试效率。
-
公开(公告)号:CN108153298B
公开(公告)日:2022-08-09
申请号:CN201710258142.1
申请日:2017-04-19
Applicant: 中国北方车辆研究所
IPC: G05D1/02 , G05D1/08 , B62D57/032
Abstract: 本发明涉及一种基于改进人工势场的足式机器人牵引控制方法及系统,构建机器人目标引力势能场和障碍物斥力势能场函数;根据势能场计算目标和障碍物虚拟力,并计算环境产生的虚拟合力;根据环境产生的虚拟合力,计算机器人的运动控制信号;根据机器人的运动控制信号,计算机身位姿控制器的输入。本发明采用改进的人工势场理论,克服了机器人在局部区域内无法到达终点的缺陷。
-
-
-
-
-
-
-
-
-