-
公开(公告)号:CN115367085A
公开(公告)日:2022-11-22
申请号:CN202211232985.1
申请日:2022-10-10
Applicant: 三亚哈尔滨工程大学南海创新发展基地 , 哈尔滨工程大学
IPC: B63C11/52
Abstract: 本发明提供了一种多模块水下斡旋龙型机器人,属于海洋装备与水下机器人领域。解决小型水下机器人无法搭载多种水下探测与作业设备;大型水下机器人的工作环境受限无法进行探测和作业问题。它包括至少两个驱动模块和至少一个搭载模块,一个搭载模块设置在龙型机器人的头部,驱动模块和搭载模块串联布置,相邻两个模块之间通过横滚‑俯仰关节连接,在搭载模块上有负载;驱动模块包括躯干结构、两个多向水下推进器和两个侧向推进器,横滚‑俯仰关节包括单出轴舵机和双出轴舵机,单出轴舵机的输出轴和双出轴舵机的输出轴空间垂直布置,龙型机器人还配有对单个舵机、横滚‑俯仰关节、推进器控制的控制系统。本发明适用于水下设备尤其是水下管道的探测。
-
公开(公告)号:CN117850423A
公开(公告)日:2024-04-09
申请号:CN202410002725.8
申请日:2024-01-02
Applicant: 哈尔滨工程大学
IPC: G05D1/43 , G05D109/30
Abstract: 考虑推进器故障的多USV群簇同步事件触发控制方法,属于无人艇控制技术领域。为了解决目前多簇控制没有考虑USV多簇控制中推进器故障的问题,以及存在资源浪费问题。本发明针对被分为s个簇群的多USV系统,首先确定虚拟领航者USV的位置信息和速度信息和第σi簇的USV的动力学模型,然后根据通讯拓扑结构选择合适的USV作为牵制节点,借助自适应输入方法对推进器故障信息进行补偿,利用神经网络技术对系统模型的非线性不确定性和外界干扰进行估计,进行设计事件触发机制和基于事件触发的多簇USV分布式容错跟踪控制方法,进而实现多USV群簇同步事件触发控制。
-
公开(公告)号:CN117465638A
公开(公告)日:2024-01-30
申请号:CN202311717781.1
申请日:2023-12-14
Applicant: 哈尔滨工程大学三亚南海创新发展基地
Abstract: 本发明属于水下机器人技术领域,公开了一种推进驱动多舱段铰接式水下蛇形机器人,包括:多个功能舱段,第一驱动部设置在功能舱段上,第一驱动部包括一对第一侧向推进器和一对第一水平推进器;第二驱动部设置在功能舱段上,第二驱动部包括一对第二侧向推进器和一对第二水平推进器;在第一工作状态时第一侧向推进器和第二侧向推进器相对于功能舱段中心轴线倾斜,一对第一侧向推进器倾斜方向相反,一对第二侧向推进器倾斜方向相反,同一侧的第一侧向推进器和第二侧向推进器倾斜方向相反,本发明能便于在复杂的水下环境中灵活移动,能够适应不同形状和曲率的管道,能够保持良好的稳定状态。
-
公开(公告)号:CN111506068B
公开(公告)日:2023-02-03
申请号:CN202010314098.3
申请日:2020-04-20
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 一种用于多波束声呐扫描作业的水面无人艇局部路径规划方法,本发明涉及水面无人艇局部路径规划方法。本发明的目的是为了解决现有局部路径规划方法避障准确率低的问题。过程为:一、得到水面无人艇航所受引力的大小和方向;二、得到水面无人艇所受的斥力大小;三、将水面无人艇所受引力的大小和所受斥力的大小进行矢量和计算,判断矢量和是否为0,若为0,则执行四;若不为0,则将矢量和叠加在无人艇上,完成无人艇的局部路径规划;四、得包含逃逸势场的改进引力场函数,对改进引力场函数取负梯度得改进引力函数;五、将所受引力和斥力进行矢量和计算后叠加在无人艇上,完成无人艇的局部路径规划。本发明用于无人艇局部路径规划领域。
-
公开(公告)号:CN111290270B
公开(公告)日:2022-06-03
申请号:CN202010087509.X
申请日:2020-02-11
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 一种基于Q‑learning参数自适应技术的水下机器人反步速度和艏向控制方法,属于机器人控制技术领域。为了解决现有的水下机器人的控制方法存在需要先验知识的问题,以及控制器参数不能实时调整的问题。本发明设计了基于Q学习算法的参数自适应反步速度和艏向控制器,将偏差和偏差变化率作为该Q学习的输入,输出调整参数,根据调整参数确定的控制参数,结合控制参数和反步法设计的控制器实现速度和艏向控制,主要用于水下机器人速度和艏向的控制。
-
公开(公告)号:CN111846009B
公开(公告)日:2022-02-08
申请号:CN202010766930.3
申请日:2020-08-03
Applicant: 哈尔滨工程大学
IPC: B62D57/032 , B25J9/16
Abstract: 一种水下多足仿生蟹机器人多足协同容错控制方法,它涉及一种多足协同容错控制方法,具体涉及一种水下多足仿生蟹机器人多足协同容错控制方法。本发明为了解决水下多足机器人的不同机械足之间由于传感器效率影响造成的通讯时延问题,以及在关节舵机出现问题时维持控制有效性的问题。本发明的具体步骤如下:用不同机械足将由于通讯设备产生的通讯时延变量构造分布式观测器;步骤二、利用BLF方法对机械足对于领航者的轨迹跟踪误差进行约束;步骤三、利用神经网络技术对机械足系统中的不确定性补偿;步骤四、针对关节舵机发生故障的多足机器人系统,设计分布式自适应容错控制算法,对水下多足仿生蟹机器人的机械足进行控制。本发明属于机器人领域。
-
公开(公告)号:CN113009826B
公开(公告)日:2021-11-30
申请号:CN202110181019.0
申请日:2021-02-08
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 一种基于新型误差变换的AUV预设性能轨迹跟踪控制方法,属于水下机器人轨迹跟踪控制领域。本发明是为了解决传统预设性能控制方法引入的性能函数参数和实际误差收敛速率没有明确的数学关系,而导致误差收敛时间不确定且超调较大的问题。本发明所述方法包括:根据AUV的控制力和力矩,得到AUV推力器故障影响下的实际的控制力和力矩;建立改进的性能函数,通过改进的性能函数确定轨迹跟踪误差的上下界;根据确定的轨迹跟踪误差的上下界,得到转换后的误差;基于转换后的误差设计虚拟控制器;基于虚拟控制器设计预设性能跟踪控制器。本发明用于AUV的轨迹跟踪控制。
-
公开(公告)号:CN112987770B
公开(公告)日:2021-09-28
申请号:CN202110217281.6
申请日:2021-02-26
Applicant: 哈尔滨工程大学
IPC: G05D1/08
Abstract: 两栖仿蟹多足机器人步行足抗饱和有限时间运动控制方法,属于机器人控制技术领域。为了解决现有的仿蟹多足机器人的步行足轨迹跟踪控制存在精度差、速度慢的问题问题。本发明首先针对两栖仿蟹多足机器人建立机器人步行足动力学模型,然后基于两栖仿蟹多足机器人步行足动力学模型确定自适应有限时间干扰观测器,利用辅助系统处理输入饱和的影响,最后利用基于输入饱和下基于自适应有限时间干扰观测器AFTDO的快速终端滑模控制器对机器人步行足运动进行控制。主要用于多足机器人步行足控制。
-
公开(公告)号:CN113110532A
公开(公告)日:2021-07-13
申请号:CN202110500855.0
申请日:2021-05-08
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 基于辅助动态系统的可底栖式AUV自适应终端滑模轨迹跟踪控制方法,本发明涉及可底栖式AUV自适应终端滑模轨迹跟踪控制方法。本发明的目的是为了解决现有方法对可底栖式AUV的轨迹跟踪控制精度低的问题。基于辅助动态系统的可底栖式AUV自适应终端滑模轨迹跟踪控制方法过程为:步骤一、建立AUV运动学方程;步骤二、基于步骤一建立的AUV运动学方程,定义位姿误差模型变量;步骤三、基于步骤一建立的AUV运动学方程和步骤二定义的位姿误差模型变量,建立AUV误差模型;步骤四、设计控制律控制步骤三建立的AUV误差模型。本发明用于AUV轨迹跟踪控制领域。
-
公开(公告)号:CN113009826A
公开(公告)日:2021-06-22
申请号:CN202110181019.0
申请日:2021-02-08
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 一种基于新型误差变换的AUV预设性能轨迹跟踪控制方法,属于水下机器人轨迹跟踪控制领域。本发明是为了解决传统预设性能控制方法引入的性能函数参数和实际误差收敛速率没有明确的数学关系,而导致误差收敛时间不确定且超调较大的问题。本发明所述方法包括:根据AUV的控制力和力矩,得到AUV推力器故障影响下的实际的控制力和力矩;建立改进的性能函数,通过改进的性能函数确定轨迹跟踪误差的上下界;根据确定的轨迹跟踪误差的上下界,得到转换后的误差;基于转换后的误差设计虚拟控制器;基于虚拟控制器设计预设性能跟踪控制器。本发明用于AUV的轨迹跟踪控制。
-
-
-
-
-
-
-
-
-