-
公开(公告)号:CN112949438A
公开(公告)日:2021-06-11
申请号:CN202110195714.2
申请日:2021-02-19
Applicant: 武汉工程大学 , 武汉引行科技有限公司
Abstract: 本发明是涉及农业与人工智能领域,尤其是一种基于贝叶斯网络的水果视觉分类方法及系统。本发明通过获取待分类水果的待分类水果数据,并进行预处理得到多个待分类水果视觉特征值;分别对每个所述待分类水果视觉特征值进行离散化处理后,输入至预先训练好的水果分类贝叶斯网络模型进行处理,得到所述待分类水果在多个等级分类下的等级分类概率;根据多个所述等级分类概率对所述待分类水果进行等级分类。本发明实现了水果的精确分类,有效地降低在水果分拣中所花费的人力物力。通过构建复杂的水果分类的贝叶斯网络模型可实现水果的精确分类,实现降低人力物力,达到水果的快速分类。
-
公开(公告)号:CN112926687A
公开(公告)日:2021-06-08
申请号:CN202110339366.1
申请日:2021-03-30
Applicant: 武汉工程大学
Abstract: 本发明公开了一种基于PCANet和WNN的用户异常用电检测的方法,包括以下步骤:S1、获取某一时间范围内用户的用电量数据,并对其进行数据预处理;S2、对预处理后的数据进行电信号特征提取,并通过采用主成分分析对用电特征进行多次降维处理,得到最终的用电特征输出;S3、将最终的用电特征通过小波神经网络WNN模型进行关联映射,检测出用户的异常用电行为。本发明可以准确的检测出用户的用电异常,促使系统对用电异常的用户进行警告,充分保证减少用电过程中的非技术性损失,提高经济效益。
-
公开(公告)号:CN111552269B
公开(公告)日:2021-05-28
申请号:CN202010343394.6
申请日:2020-04-27
Applicant: 武汉工程大学
Abstract: 本发明提供一种基于姿态估计的多工业机器人安全性检测方法及系统,其中方法包括:S1:采集多工业机器人标准作业视频,并建立多个单工业机器人动作模式姿态向量序列A14,单工业机器人动作模式姿态向量序列A14中包含多个单工业机器人姿态向量A13,执行S2;S2:实时采集多工业机器人的作业视频,获取多个单工业机器人姿态向量A23,执行S3;S3:将任一单工业机器人姿态向量A23,记为h1,与对应的单工业机器人动作模式姿态向量序列A14进行匹配,若匹配成功,则执行S2,若匹配失败,则检测到异常动作,控制工业机器人急停,本方法检测过程简单准确且成本较低,而且可以同时检测多个工业机器人的工作状态。
-
公开(公告)号:CN112070670A
公开(公告)日:2020-12-11
申请号:CN202010915896.1
申请日:2020-09-03
Applicant: 武汉工程大学
Abstract: 本发明公开了一种基于全局‑局部分离注意力机制的人脸超分辨率方法及系统,将高分辨率人脸图像下采样至目标低分辨率人脸图像;将目标低分辨率图像进行分块操作,分出相互重叠的图像块后,提取粗糙的脸部特征图;构建分离注意力网络作为精细特征提取器,将粗糙的脸部特征输入分离注意力网络获得精细的脸部特征图,分离注意力网络包含若干个全局‑局部分离注意力组,每个全局‑局部分离注意力组产生两路局部注意力并用一个全局注意力模块融合不同的局部注意力,使局部注意力跨特征组交互,实现网络的全局注意力;将得到的人脸精细特征图进行上采样;将上采样后的人脸特征图重建成目标的高分辨率人脸图像。本发明能生成更高质量的人脸高分辨率图像。
-
公开(公告)号:CN111639740A
公开(公告)日:2020-09-08
申请号:CN202010386609.2
申请日:2020-05-09
Applicant: 武汉工程大学 , 中铁大桥局集团有限公司 , 中铁大桥科学研究院有限公司
Abstract: 本发明公开一种基于多尺度卷积神经网络的钢筋计数方法,包括:采集成捆钢筋的端部图像;制作训练集;基于多尺度卷积神经网络构建钢筋检测模型,并对训练集中钢筋的端部图像进行浅层、中层、深层三个尺度的特征提取,然后将顶层特征图上采样与底层特征图融合;检测时将钢筋的端部图像划分为多个单元网格,以每一个单元网格为中心,每个单元网格又以得到的深层尺度特征图、新的中层尺度特征图和新的浅层尺度特征图的尺寸为模板,提取图像的特征,并与对应尺寸的特征图模板相比较,得到候选边界框,利用非极大抑制算法得到钢筋的数量。本发明的钢筋计数方法能够准确、快速的统计一堆尺寸不一的钢筋中钢筋的数量,且精度高。
-
公开(公告)号:CN111531580A
公开(公告)日:2020-08-14
申请号:CN202010342977.7
申请日:2020-04-27
Applicant: 武汉工程大学
Abstract: 本发明提供一种基于视觉的多工业机器人故障检测方法及系统,其中,一种基于视觉的多工业机器人故障检测方法,包括以下步骤,S1:采集多工业机器人标准作业视频,建立多个单工业机器人标准作业模式视频帧序列A13,执行S2;S2:实时采集多工业机器人作业视频,建立多个单工业机器人实时作业视频帧序列A22,执行S3;S3:将单工业机器人实时动作图像与对应的单工业机器人标准作业模式视频帧序列A13中的图像进行匹配,采用两阶段法检测单工业机器人是否动作异常,若是,执行S4,若否,执行S2;S4:控制该工业机器人急停。本发明具有采用非接触式的方式发现工业机器人本体突发故障,避免在人机协作时发生机器人伤人的安全事故、检测过程简单准确的优点。
-
公开(公告)号:CN106530231B
公开(公告)日:2020-08-11
申请号:CN201610985891.X
申请日:2016-11-09
Applicant: 武汉工程大学
IPC: G06T3/40
Abstract: 本发明公开了一种基于深层协作表达的超分辨率图像的重建方法及系统。其中,该方法包括:重建过程;重建过程包括:对初始图像、低分辨率图像训练集中的图像和高分辨率图像训练集中的图像在像素域中划分图像块;计算由低分辨率图像训练集划分的图像块训练集对由初始图像划分的图像块进行重建时的最优权值系数;将由初始图像划分的图像块替换为由高分辨率图像训练集划分的图像块,用最优权值系数合成高分辨率图像块;将高分辨率图像块融合,获得高分辨率图像;将获得的高分辨率图像作为新的初始图像,进行至少一次重建过程,得到最终的高分辨率图像,解决了重建精度低的技术问题,满足了实际的分辨率重建需求。
-
公开(公告)号:CN105354841B
公开(公告)日:2019-02-01
申请号:CN201510687565.6
申请日:2015-10-21
Applicant: 武汉工程大学
Abstract: 本发明公开了一种快速遥感影像匹配方法及系统,该方法包括以下步骤:S1、获取基准影像和待匹配影像并对其进行粗匹配,分别对两幅影像构建积分直方图,根据待匹配影像与基准影像积分直方图的相似度确定候选匹配区域;S2、对待匹配影像和候选匹配区域进行精匹配,具体步骤为:S21、在待匹配影像和候选匹配区域中进行特征提取,并构建特征点匹配集合;S22、根据特征点的匹配集合构建概率表达模型和特征点映射的形式化表达;S23、根据最大期望算法剔除误匹配,计算得出精确匹配模型,并通过精确匹配模型得到影像的精确匹配区域。本发明大大缩短了影像匹配的过程,提高了匹配的精度和算法的鲁棒性。
-
公开(公告)号:CN104657718B
公开(公告)日:2018-12-14
申请号:CN201510078423.X
申请日:2015-02-13
Applicant: 武汉工程大学
Abstract: 本发明公开了一种基于人脸图像特征极限学习机的人脸识别方法,该方法包括以下步骤:对原始图像进行预处理;对样本进行主成分分析得到特征脸谱,将图像投影到特征域;然后利用极限学习机算法建立人脸图像和人脸标签之间的映射关系;最后利用极限学习机推导输入人脸图像的标签属性。本方法利用了极限学习机的优点,降低了传统神经网络的参数估计和优化的复杂度,进一步缩短了训练时间和提高了人脸图像的识别率。
-
公开(公告)号:CN105608006B
公开(公告)日:2018-06-08
申请号:CN201510982321.0
申请日:2015-12-22
Applicant: 武汉工程大学
IPC: G06F11/36
Abstract: 本发明公开了一种基于概率模型的程序错误检测方法及系统,该方法包括以下步骤:S1、获取概率模型和待检测程序,从待检测程序中提取待检测的函数调用序列集合;S2、获取单个待检测的函数调用序列,求解最相似的函数调用序列集合,并计算联合概率;S3、根据相似集合对该待检测序列进行检测并生成修复方案;S4、完成该待检测序列的检测和修复后,记录检测到的各个错误信息及修复方案;S5、对待检测集合中的所有待检测序列检测完毕后,输出程序错误报告。本发明无需处理概率模型转换到确定性模型时的阈值选择问题,能够快速的检测程序中的错误,且检测准确率高。
-
-
-
-
-
-
-
-
-