-
公开(公告)号:CN112949438A
公开(公告)日:2021-06-11
申请号:CN202110195714.2
申请日:2021-02-19
Applicant: 武汉工程大学 , 武汉引行科技有限公司
Abstract: 本发明是涉及农业与人工智能领域,尤其是一种基于贝叶斯网络的水果视觉分类方法及系统。本发明通过获取待分类水果的待分类水果数据,并进行预处理得到多个待分类水果视觉特征值;分别对每个所述待分类水果视觉特征值进行离散化处理后,输入至预先训练好的水果分类贝叶斯网络模型进行处理,得到所述待分类水果在多个等级分类下的等级分类概率;根据多个所述等级分类概率对所述待分类水果进行等级分类。本发明实现了水果的精确分类,有效地降低在水果分拣中所花费的人力物力。通过构建复杂的水果分类的贝叶斯网络模型可实现水果的精确分类,实现降低人力物力,达到水果的快速分类。
-
公开(公告)号:CN111552269B
公开(公告)日:2021-05-28
申请号:CN202010343394.6
申请日:2020-04-27
Applicant: 武汉工程大学
Abstract: 本发明提供一种基于姿态估计的多工业机器人安全性检测方法及系统,其中方法包括:S1:采集多工业机器人标准作业视频,并建立多个单工业机器人动作模式姿态向量序列A14,单工业机器人动作模式姿态向量序列A14中包含多个单工业机器人姿态向量A13,执行S2;S2:实时采集多工业机器人的作业视频,获取多个单工业机器人姿态向量A23,执行S3;S3:将任一单工业机器人姿态向量A23,记为h1,与对应的单工业机器人动作模式姿态向量序列A14进行匹配,若匹配成功,则执行S2,若匹配失败,则检测到异常动作,控制工业机器人急停,本方法检测过程简单准确且成本较低,而且可以同时检测多个工业机器人的工作状态。
-
公开(公告)号:CN111531580A
公开(公告)日:2020-08-14
申请号:CN202010342977.7
申请日:2020-04-27
Applicant: 武汉工程大学
Abstract: 本发明提供一种基于视觉的多工业机器人故障检测方法及系统,其中,一种基于视觉的多工业机器人故障检测方法,包括以下步骤,S1:采集多工业机器人标准作业视频,建立多个单工业机器人标准作业模式视频帧序列A13,执行S2;S2:实时采集多工业机器人作业视频,建立多个单工业机器人实时作业视频帧序列A22,执行S3;S3:将单工业机器人实时动作图像与对应的单工业机器人标准作业模式视频帧序列A13中的图像进行匹配,采用两阶段法检测单工业机器人是否动作异常,若是,执行S4,若否,执行S2;S4:控制该工业机器人急停。本发明具有采用非接触式的方式发现工业机器人本体突发故障,避免在人机协作时发生机器人伤人的安全事故、检测过程简单准确的优点。
-
公开(公告)号:CN110490236A
公开(公告)日:2019-11-22
申请号:CN201910690299.0
申请日:2019-07-29
Applicant: 武汉工程大学 , 武汉引行科技有限公司 , 武汉创逸灵科技有限公司
Abstract: 本发明涉及一种基于神经网络的自动图像标注方法、系统、装置和介质,利用预先训练好的卷积神经网络模型提取实验数据集的图像特征;根据图像特征,在训练集中计算得到待标注图像的邻域图像集和对应的第一标签域;构建第一标签域与训练集对应的第二标签域之间的标签语义关联模型,根据标签语义关联模型,在第二标签域中计算得到与每个第一标签相关联的第三标签域;计算待标注图像与每个邻域图像之间的相似度,根据所有相似度得到每个第一标签成为目标标签的第一概率,并根据所有第一概率和标签语义关联模型得到每个第三标签成为目标标签的第二概率;根据所有相似度、所有第一概率和所有第二概率,得到目标标签,并根据目标标签完成标注。
-
公开(公告)号:CN111709991A
公开(公告)日:2020-09-25
申请号:CN202010467531.7
申请日:2020-05-28
Applicant: 武汉工程大学 , 武汉引行科技有限公司
Abstract: 本发明涉及一种铁路工机具的检测方法、系统、装置和存储介质,方法包括获取多个工机具图像,根据所有工机具图像制作数据集;构建深度卷积神经网络,利用数据集和深度卷积神经网络构建反射图像提取网络,根据深度卷积神经网络和反射图像提取网络得到特征检测网络,根据深度卷积神经网络、反射图像提取网络和特征检测网络得到初始检测网络模型;利用数据集对初始检测网络模型进行训练,得到目标检测网络模型;根据目标检测网络模型对待检测工机具图像进行检测,得到检测结果。本发明可有效解决背景复杂、光照不均以及目标尺度差异大、形态复杂和存在遮挡等问题,对铁路工机具进行快速而准确地目标检测,实现铁路工机具的自动清点。
-
公开(公告)号:CN104019902B
公开(公告)日:2016-09-28
申请号:CN201410269974.X
申请日:2014-06-16
Applicant: 武汉工程大学 , 武汉创逸灵科技有限公司
IPC: G01J3/46
Abstract: 本发明公开了一种家用试纸阅读器装置及其检测方法,其中该装置包括密封检测空间,该密封检测空间上设有活动窗口,其内设有步进电机,该步进电机上设有用于放置被测试纸的托盘,托盘上方设有凸透镜,凸透镜上方设置颜色传感器,在托盘上方还设有辅助光源;该装置还包括微处理器,与步进电机连接;在托盘上设有触点,托盘上方还设有与微处理器连接的感应触点;该装置还设有数据存储器,与微处理器连接;该密封检测空间外设有液晶显示器和按键,均与微处理器连接。本发明可以自动显示检测结果,可避免人工读取过程中人为因素的影响。
-
公开(公告)号:CN102073984B
公开(公告)日:2012-07-04
申请号:CN201110003705.5
申请日:2011-01-10
Applicant: 武汉工程大学
IPC: G06T3/00
Abstract: 本发明涉及一种图像II型薛定谔变换方法。包括有以下步骤:1)将大小为m×n的图像从计算机存储装置中提取,获取其灰度分布函数I(x),并令图像II型薛定谔变换势函数v(x)=-J·I(x);2)创建一个大小为m×n的二值图像3)给定常数a和t;4)在频域中计算图像的I-型离散薛定谔变换5)在空域中利用公式计算II-型离散薛定谔变换u(x,t);6)用图像u(x,t)的灰度平均值作为门限对图像u(x,t)进行二值化得二值图像u1(x,t);7)令则u2(x,t)为经一次II型薛定谔变换后得到的目标区域;8)u2(x,t)即为最后提取的目标图像。本发明相对于现有技术的主要优点:避免了大矩阵的对角化,计算量及计算时间大大减少。
-
公开(公告)号:CN112949438B
公开(公告)日:2022-09-30
申请号:CN202110195714.2
申请日:2021-02-19
Applicant: 武汉工程大学 , 武汉引行科技有限公司
IPC: G06V20/68 , G06V10/44 , G06V10/56 , G06V10/774 , G06V10/764 , G06T7/00 , G06T7/62 , G06T7/90
Abstract: 本发明是涉及农业与人工智能领域,尤其是一种基于贝叶斯网络的水果视觉分类方法及系统。本发明通过获取待分类水果的待分类水果数据,并进行预处理得到多个待分类水果视觉特征值;分别对每个所述待分类水果视觉特征值进行离散化处理后,输入至预先训练好的水果分类贝叶斯网络模型进行处理,得到所述待分类水果在多个等级分类下的等级分类概率;根据多个所述等级分类概率对所述待分类水果进行等级分类。本发明实现了水果的精确分类,有效地降低在水果分拣中所花费的人力物力。通过构建复杂的水果分类的贝叶斯网络模型可实现水果的精确分类,实现降低人力物力,达到水果的快速分类。
-
公开(公告)号:CN111531582B
公开(公告)日:2022-09-20
申请号:CN202010343392.7
申请日:2020-04-27
Applicant: 武汉工程大学
Abstract: 本发明提供一种基于视觉的工业机器人故障检测方法及系统,其中,方法包括以下步骤:S1:获取工业机器人正常工作下的作业视频,并根据所述作业视频计算最长公共哈希子序列,所述最长公共哈希子序列包含多个哈希值,所述最长公共哈希子序列用于表示工业机器人的周期性动作模式,执行S2;S2:实时采集工业机器人的工作图像,分离出工业机器人,形成第二作业图像,计算所述第二作业图像的哈希值,记为h1,执行S3;S3:将所述哈希值h1与所述最长公共哈希子序列进行顺序极近似值匹配,若匹配成功,则执行S2,若匹配失败,则检测到异常动作,控制工业机器人急停,通过采集作业图像的方式对工业机器人进行故障检测,不仅成本低、采集难度小,抗干扰能力强。
-
公开(公告)号:CN110490236B
公开(公告)日:2021-08-24
申请号:CN201910690299.0
申请日:2019-07-29
Applicant: 武汉工程大学 , 武汉引行科技有限公司 , 武汉创逸灵科技有限公司
Abstract: 本发明涉及一种基于神经网络的自动图像标注方法、系统、装置和介质,利用预先训练好的卷积神经网络模型提取实验数据集的图像特征;根据图像特征,在训练集中计算得到待标注图像的邻域图像集和对应的第一标签域;构建第一标签域与训练集对应的第二标签域之间的标签语义关联模型,根据标签语义关联模型,在第二标签域中计算得到与每个第一标签相关联的第三标签域;计算待标注图像与每个邻域图像之间的相似度,根据所有相似度得到每个第一标签成为目标标签的第一概率,并根据所有第一概率和标签语义关联模型得到每个第三标签成为目标标签的第二概率;根据所有相似度、所有第一概率和所有第二概率,得到目标标签,并根据目标标签完成标注。
-
-
-
-
-
-
-
-
-