一种模型训练方法、业务风控方法、装置以及存储介质

    公开(公告)号:CN118627569A

    公开(公告)日:2024-09-10

    申请号:CN202410735484.8

    申请日:2024-06-05

    Abstract: 本说明书提供的一种模型训练方法、业务风控方法、装置以及存储介质,可以首先获取第一样本交易数据以及其对应的实际风险层级标签,并将第一样本交易数据输入到过渡模型中包含的特征提取层中,以提取出交易特征,并将交易特征输入到过渡模型中包含的分类层中,以确定出预测风险层级标签,以最小化预测风险层级标签与实际风险层级标签之间的偏差为优化目标,至少对特征提取层进行训练,通过训练后的特征提取层以及预设的各目标分类层,构建目标模型,并将第二样本交易数据输入到目标模型中,以通过目标模型确定出预测风险识别结果,以最小化预测风险识别结果与第二样本交易数据对应的实际风险识别结果之间的偏差为优化目标,对目标模型进行训练。

    一种核身推荐模型训练方法及装置

    公开(公告)号:CN114462502B

    公开(公告)日:2024-07-12

    申请号:CN202210011293.8

    申请日:2022-01-06

    Abstract: 本说明书公开了一种核身推荐模型训练方法及装置。所述方法包括:获取训练样本集合;所述训练样本集合包括不同业务场景中标注有核身产品推荐标签的训练样本;根据所述训练样本集合,预训练所述表征模型;预训练后的表征模型用于将输入的样本特征映射到第一向量空间中,针对相同推荐标签的样本减小第一向量空间映射结果之间的距离;获取任一业务场景中的若干训练样本,将所获取的训练样本输入所述预训练后的表征模型得到第一向量空间映射结果,根据所获取训练样本的第一向量空间映射结果和核身产品推荐标签,训练该业务场景对应的预测模型。

    一种支付风险识别方法、装置及设备

    公开(公告)号:CN113516480B

    公开(公告)日:2024-04-26

    申请号:CN202110953376.4

    申请日:2021-08-19

    Abstract: 本说明书一个或多个实施例提供了一种支付风险识别方法、装置及设备,该方法包括:若针对目标用户的本次支付交易事件执行到支付处理链路中的第一预设处理节点,则利用深度兴趣网络模型,基于目标用户的历史支付交易数据和当前支付环境数据,确定目标用户的预测支付行为数据;利用预设风险识别模型并基于上述预测支付行为数据,对本次支付交易事件进行风险识别,得到相应的预测支付风险识别结果;在本次支付交易事件执行到第二预设处理节点时,获取在本次支付交易事件执行过程中所产生的目标用户的真实支付行为数据;基于上述预测支付行为数据、真实支付行为数据和预测支付风险识别结果,确定本次支付交易事件对应的目标支付风险识别结果。

    一种训练风险识别模型的方法及装置

    公开(公告)号:CN117743856A

    公开(公告)日:2024-03-22

    申请号:CN202311845208.9

    申请日:2023-12-28

    Abstract: 本说明书实施例涉及一种训练风险识别模型的方法及装置,方法包括:首先,获取有硬标签的第一样本集,以及无标签的第二样本集,任一样本集包括交易样本,硬标签指示交易是否为风险交易。然后,基于插值法对第一样本集进行样本增强,并使用增强后的第一样本集训练得到第一模型。接下来,将第一样本集和第二样本集构成的样本总集中的各个交易样本输入到第一模型中,得到关于风险预测的软标签。最后,将第一样本集中的交易样本输入到第二模型中,基于硬标签确定第一损失;将样本总集中的交易样本输入到第二模型中,基于软标签确定第二损失;基于第一损失和第二损失所确定的总预测损失,对第二模型进行训练,第二模型用于预测交易是否为风险交易。

    一种模型的防盗取检测方法、装置、存储介质及电子设备

    公开(公告)号:CN117592056A

    公开(公告)日:2024-02-23

    申请号:CN202311564982.2

    申请日:2023-11-21

    Abstract: 本说明书公开了一种模型的防盗取检测方法、装置、存储介质和电子设备,防盗取检测模型包括克隆器及生成器,克隆器用于克隆预先训练的业务模型,生成器用于生成输入所述克隆器的仿真业务数据。先将噪声输入生成器,获得第一仿真业务数据,并通过克隆器获得第一仿真业务数据的第一业务结果。再根据第一业务结果及第一仿真业务数据,以提高克隆器输出结果的错误率为训练目标,对生成器进行训练。接着,将噪声输入训练后的生成器,获得第二仿真业务数据,通过克隆器及业务模型获得第二仿真业务数据的第二业务结果及标签。最后,根据第二业务结果及标签,对克隆器进行训练,利用训练过程中的克隆器的迭代次数,检测业务模型的防盗取能力。

    一种模型训练的方法、装置、存储介质及电子设备

    公开(公告)号:CN117312847A

    公开(公告)日:2023-12-29

    申请号:CN202311146762.8

    申请日:2023-09-06

    Abstract: 本说明书公开了一种模型训练的方法、装置、存储介质和电子设备,所述方法包括:针对各训练样本,确定该训练样本中指定类型的数据为指定数据,并将指定数据输入待训练的风险识别模型的第一编码层,确定该训练样本的第一特征。将该训练样本中所有类型的数据输入待训练的风险识别模型的第二编码层,确定该训练样本的第二特征。以该训练样本的第一特征与该训练样本的第二特征之间的距离最小和该训练样本的第一特征与除该训练样本外的其他训练样本的第二特征之间的距离最大为目标,至少对待训练的风险识别模型中第二编码层的模型参数进行调整。通过第一特征指导第二编码层对训练样本进行特征提取,更好地表征用户存在的风险,提高识别结果准确性。

    一种数据的处理方法、装置及设备

    公开(公告)号:CN117290735A

    公开(公告)日:2023-12-26

    申请号:CN202311140828.2

    申请日:2023-09-05

    Inventor: 施玮 傅欣艺 傅幸

    Abstract: 本说明书实施例公开了一种数据的处理方法、装置及设备,该方法包括:获取预设时长内多个不同用户触发目标业务执行的过程中产生的行为序列数据,然后,可以确定能够表征每个行为序列数据的表征信息,基于确定的多个表征信息对行为序列数据进行聚类处理,得到一个或多个不同的聚类簇,之后,可以将相似度大于预设相似度阈值的行为序列数据对应的操作目的信息和操作意图信息,以及属于同一个聚类簇的行为序列数据作为提示信息,将该提示信息和得到的聚类簇输入到语言模型中,得到不同的聚类簇对应的操作行为的理解信息和/或意图信息,进而可以确定不同的聚类簇对应的类别标签信息。

    一种用户行为状态的确定方法、装置及设备

    公开(公告)号:CN115905624B

    公开(公告)日:2023-06-16

    申请号:CN202211271412.X

    申请日:2022-10-18

    Abstract: 本说明书实施例公开了一种用户行为状态的确定方法、装置及设备,该方法包括:获取目标用户多次执行目标业务所产生的操作行为信息构建的业务时序信息,基于业务时序信息和预先训练的神经网络模型,确定业务时序信息对应的重构系数,训练神经网络模型的过程中通过以下目标函数对神经网络模型中的模型参数进行优化处理:基于由训练样本和训练样本对应的重构系数样本构建的范数,以及重构系数样本对应的熵确定的目标函数;基于业务时序信息对应的重构系数和业务时序信息,确定业务时序信息中不同时间执行的目标业务之间的关联关系;基于业务时序信息中不同时间执行的目标业务之间的关联关系,确定目标用户执行目标业务的行为状态信息。

    一种分类模型训练的方法、装置、存储介质及电子设备

    公开(公告)号:CN115828162A

    公开(公告)日:2023-03-21

    申请号:CN202310137411.4

    申请日:2023-02-08

    Abstract: 本说明书公开了一种分类模型训练的方法、装置、存储介质及电子设备,在本说明书提供的方法中,先获得每种模态类型的信息的单模态分类结果,作为第一分类结果,然后将各模态类型的信息输入待训练的多模态分类模型,确定各模态类型的信息的特征与各特征的融合特征,并根据融合特征确定所述训练样本的分类结果,作为第二结果,根据所述第一分类结果、第二分类结果、所述标注确定各模态类型对应的损失,根据各模态类型对应的损失确定共同损失,根据共同结果调整待训练的多模态分类模型的参数,得到训练后的多模态分类模型。从上述方法中可以看出,根据本方法训练得到的多模态分类模型能够准确的根据多模态类型的信息进行分类。

Patent Agency Ranking