-
公开(公告)号:CN107434010B
公开(公告)日:2019-02-22
申请号:CN201710880450.8
申请日:2017-09-26
Applicant: 哈尔滨工程大学 , 上海航士海洋科技有限公司 , 哈尔滨航士科技发展有限公司
Abstract: 本发明一种电动的海浪主动补偿登乘系统及其控制方法涉及海洋工程技术领域;该系统包括横滚补偿机构、俯仰补偿机构、伸缩补偿机构、位姿检测系统、运动控制系统和电气系统;该方法包括通过基座连接在船体的甲板上;把该系统的末端放置在海上的风机平台上,因为船体受到海浪的影响,所以船体会发生姿态和位置的变化,通过位姿检测系统检测船体变化的位置和姿态变化参数,向运动控制系统提供控制信息反馈;运动控制系统根据位姿检测系统的参数,通过模型解算和运动控制计算,实时控制横滚补偿机构、俯仰补偿机构和伸缩补偿机构对海浪主动进行补偿,本发明实现了对海浪进行主动补偿,进而保障维修人员安全可靠走上海上风机平台。
-
公开(公告)号:CN108820138A
公开(公告)日:2018-11-16
申请号:CN201810519624.2
申请日:2018-05-28
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种一种基于视觉引导的海上登靠系统自动对接方法,属于海上平台登靠技术领域。本发明针对运维船受海浪影响,无法定位,同时操作人员受视线的限制,无法准确将登靠舷梯放置在海上平台的问题,利用视觉进行引导,不断检测和修正海上平台的位置和接近距离,采用自动对接的控制方法将舷梯末端安全、平稳、准确放置到海上平台。本发明为海浪主动补偿登靠系统自动补偿提供提供新的解决方案,弥补了人工操控过程中海浪对船体干扰的偶然性,提高了登靠系统的自动对接能力,为海上风机平台、石油平台的安全运维提供了保证。
-
公开(公告)号:CN107697248A
公开(公告)日:2018-02-16
申请号:CN201710880824.6
申请日:2017-09-26
Applicant: 哈尔滨航士科技发展有限公司 , 哈尔滨工程大学 , 上海航士海洋科技有限公司
CPC classification number: B63C11/52 , B63B9/00 , G06F17/5009
Abstract: 一种深海作业型机器人推进器的误差及参数修正方法,属于水下机器人技术领域,本发明为了解决目前无法对深海作业型机器人推进器的误差进行推导和修正的问题。步骤一,理论分析,确定误差来源,建立全误差模型;步骤二,根据步骤一所述的全误差模型,建立水平姿态下的推进器安装角度误差模型;步骤三,根据步骤一所述的全误差模型,建立水平姿态下的推进器安装位置误差模型;步骤四,根据步骤一所述的全误差模型,建立非水平姿态误差模型;步骤五,进行水池实验;步骤六,误差模型修正,完成对推进器的误差及参数修正。本发明的一种深海作业型机器人推进器的误差及参数修正方法能实现对作业型ROV的全误差运动模型的建立,计算推进器的误差。
-
公开(公告)号:CN104999463B
公开(公告)日:2017-03-01
申请号:CN201510400261.7
申请日:2015-07-09
Applicant: 哈尔滨工程大学
IPC: B25J9/16
Abstract: 本发明涉及机器人技术领域,提供的是一种基于构形平面的冗余机械臂运动控制方法,该方法能够保证冗余机械臂在复杂的工作空间中实现空间避障等多目标条件下的运动控制。本发明包括如下步骤:运用动力学对冗余机械臂进行构形平面划分;按照构形平面匹配的方式进行冗余机械臂初规划;对规划的冗余机械臂的每个构形平面进行空间障碍物干涉检测,对产生干涉的构形平面进行重新调整和规划;对调整后的冗余机械臂规划进行关节的速度、加速度的样条曲线平滑处理;对整个运动过程进行动力学校核。本发明结合冗余机械臂的结构特点和工作方式,将构形平面引入到冗余机械臂的运动控制中,该方法能够直观快速实现冗余机械臂的运动控制规划。
-
公开(公告)号:CN103901898B
公开(公告)日:2016-08-24
申请号:CN201410121131.5
申请日:2014-03-28
Applicant: 哈尔滨工程大学
IPC: G05D3/00
Abstract: 本发明提供的是一种多自由度机器人的逆运动学通用求解方法。本运用共性空间理论建立nR机器人的通用运动学方程,运用加权的空间矢量投影法分析空间矢量投影值与空间机器人转动关节角的关系,以各关节矢量在机器人末端矢量上投影加权值做为调整机器人末端位姿的依据,通过确定各关节矢量的投影加权值实现逆运动学的半解析求解。本发明提供的方法不仅仅实现了nR机器人运动学求解,同时还兼顾空间避障任务。该方法可广泛应用于串联式空间nR机器人,具有计算速度快、解算精度高的优点,为串联形式的机器人提供控制输入参数,满足工业现场对机器人运动学解算的作业需要。
-
公开(公告)号:CN104802971A
公开(公告)日:2015-07-29
申请号:CN201510224033.9
申请日:2015-05-05
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种深海作业型ROV推进器系统。ROV控制器根据ROV当前的运动状态产生六自由度的速度控制指令;通信单元采用TCP/IP的网络通信方式,将ROV控制器产生的速度控制指令传送给推力分配单元;推进器单元包括4个水平推进器和3个垂直推进器;推力分配单元根据接收到的速度控制指令,将指令分解,得到每个推进器的推力值传送给驱动单元;驱动单元根据接收到的推力值输出相应的电压信号,传送给推进器比例阀,调节推进器比例阀的开合;液压单元通过推进器比例阀将液压油传送给推进器单元。本发明能够提高推进系统执行能力和效率。
-
公开(公告)号:CN103395061A
公开(公告)日:2013-11-20
申请号:CN201310286598.0
申请日:2013-07-09
Applicant: 哈尔滨工程大学
Abstract: 本发明涉及的是一种机械控制系统,特别涉及一种可以自由组装的可重构模块机器人系统。可重构模块机器人模块系统,包括单自由度模块、多自由度模块和连接模块,单自由度模块包括回转模块、摇摆模块、移动模块、执行模块;连接模块包括固连连接模块和调整距离连接模块。本发明设计模块结构紧凑,便于模块间快速连接。连接模块分为固定连接模块和距离连接模块:固定连接模块提供标准的电气和机械连接接口,用于运动模块间连接,能够保证安装快速性,固定连接模块具有多种角度连接方式,保证连接的多样性。
-
公开(公告)号:CN115560759A
公开(公告)日:2023-01-03
申请号:CN202211086240.9
申请日:2022-09-06
Applicant: 哈尔滨工程大学
Abstract: 本发明提供了一种基于海底油气管道检测的水下多源导航定位方法,建立集中式SINS/DVL/USBL组合导航的信息滤波模型,得到对导航误差状态的全局最优预测估计;然后分别建立SINS/DVL/USBL组合导航系统状态模型和SINS/DVL/USBL组合导航观测模型;通过改进DS‑UKF算法,通过充分利用延迟量测信息来提高顺势非线性状态估计精度;最后通过加权one‑class SVM的离群值检测算法,有效解决USBL数据的噪声和跳点问题,进而提高水下导航精度。本发明有效解决长航时管道检测机器人水下定位精度问题,同时综合信息时间延迟、信息突变等因素,极大限度地提高了水下定位精度。
-
公开(公告)号:CN110135438B
公开(公告)日:2022-09-27
申请号:CN201910384347.3
申请日:2019-05-09
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于梯度幅值预运算的改进SURF算法,属于水下目标图像识别领域,以传统的SURF算法为基础,通过积分图查找的方式来代替复杂的高斯计算,在图像的边缘化和锐点中存在描述图像的极值特征和高频噪声,引入图像信噪比衡量指标,用以突出有效特征或者其分量。在SURF算法构建Hessian矩阵时,在Hessian之前加入具有平滑的梯度幅值计算方法,有效改善现有SURF算法的效果。本发明解决了传统SURF算法的特征点数目少和特征点不均匀的难题,具有特征点提取精度高,有更好的噪声抑制力的优点,可引入水下三维重建中,可有效的提高水下目标三维重建的精度与质量,为水下机器人进行水下观测和作业提供有力的支撑。
-
公开(公告)号:CN110618606B
公开(公告)日:2022-06-17
申请号:CN201910938266.3
申请日:2019-09-30
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种复合干扰下的欠驱动AUV反步自适应模糊滑模控制方法。首先建立AUV的运动学与动力学模型,建立基于Serret‑Frenet坐标系的轨迹跟踪误差模型;根据误差模型,考虑在无干扰情况下,分别设计水平面和垂直面的轨迹跟踪反步滑模控制器,实现轨迹跟踪功能;在前述基础上,考虑系统在复合干扰条件下的工作状态,在原有控制器上增加自适应模糊逻辑系统,提高系统的抗干扰能力。以实现在外界复合干扰条件下对欠驱动AUV的轨迹跟踪控制。本发明能够辨识欠驱动AUV复合干扰,为水下机器人的轨迹跟踪精确控制提供了一种具有自适应,鲁棒性强等优点的参考方案。
-
-
-
-
-
-
-
-
-