-
公开(公告)号:CN111031102A
公开(公告)日:2020-04-17
申请号:CN201911166849.5
申请日:2019-11-25
Applicant: 哈尔滨工业大学
Abstract: 一种多用户、多任务的移动边缘计算系统中可缓存的任务迁移方法,属于移动边缘计算系统的应用领域。本发明为了解决现有的移动边缘计算系统中任务迁移方法中确定迁移目标服务器时存实时性差、能耗开销较大的问题。本发明以最小的能耗开销将计算任务从终端设备迁移至选定的边缘服务器,在移动边缘计算系统中,定义移动设备用户的集合A={1,2,…,N},并且每一个用户都有一个待完成的计算任务的集合B={1,2,…,M},这些任务由一个单一的无线基站相连,其中的移动边缘计算服务器为这些移动设备提供计算和缓存服务;所述方法的实现包括通信模型、计算模型、任务缓存模型以及任务迁移模型的构建。本发明有效减少在整个移动边缘计算系统中所有用户所需的总的时间和能耗开销。
-
公开(公告)号:CN110610005A
公开(公告)日:2019-12-24
申请号:CN201910870274.9
申请日:2019-09-16
Applicant: 哈尔滨工业大学
Abstract: 基于深度学习的盗窃罪辅助量刑方法属于计算机领域;无法实现在较少人工标注情况下的案情语义表示和特定罪名的刑期精准预测;包括根据刑法规定和关于盗窃罪的量刑规定,结合已公开的盗窃罪一审判决书,从被盗窃物品价值、犯罪主体信息、犯罪事实描述、判决结果角度定义形式化描述盗窃案的11维特征;对裁判文书进行文本预处理;整合为语料集,训练词向量;完成除被盗窃物品价值和刑期之外特征的提取,使用循环神经网络为每一维特征分别构建特征生成器,从而提取特征值;使用线性回归和多层神经网络模型作为预测器,输入案件特征向量,输出刑期预测结果;能够在较少依赖人工标注的情况下实现对案情的深度语义理解和给出明确的刑期预测值。
-
公开(公告)号:CN110149302A
公开(公告)日:2019-08-20
申请号:CN201910190234.X
申请日:2019-03-13
Applicant: 国家计算机网络与信息安全管理中心 , 哈尔滨工业大学
IPC: H04L29/06 , H04L12/721 , H04L12/46
Abstract: 本发明公开了一种匿名通信中面向地域多样性的节点选择方法,通过对路由节点进行评估,筛选出高性能的路由节点,再从中根据路由节点所在的地域选择位于不同地域的路由节点构成通信隧道,有效地提高了对消极恶意节点的抵御能力,通过选择不同地域的路由节点组成隧道,增加了攻击者的攻击成本,从而提高了系统的匿名性,以及对共谋攻击的抵御能力。
-
公开(公告)号:CN109218441A
公开(公告)日:2019-01-15
申请号:CN201811215367.X
申请日:2018-10-18
Applicant: 哈尔滨工业大学
IPC: H04L29/08 , H04L12/24 , H04L12/26 , H04L12/733 , H04L12/803
Abstract: 一种基于预测和区域划分的P2P网络动态负载均衡方法属于网络文件传输领域;包括获取节点资源利用率;判断节点资源利用率是否超过高负载区阈值,若是,执行步骤e,若否,执行步骤c;根据节点当前文件访问情况预测接下来的访问量;判断文件是否成为热点文件,若是,执行步骤e,若否,执行步骤a;向周围节点广播获取周围节点负载信息;判断是否处在高负载区域,若是,执行高负载区域负载均衡模块,若否,执行低负载区域负载均衡模块;服务器建立热点文件副本,进行步骤a;本发明能够很好地实现实际系统网络的负载均衡。
-
公开(公告)号:CN104615936B
公开(公告)日:2018-03-30
申请号:CN201510096203.X
申请日:2015-03-04
Applicant: 哈尔滨工业大学
Abstract: 云平台VMM层行为监控方法,本发明涉及云平台VMM层行为监控方法。本发明是要解决现有技术的问题主要在于:运行环境不安全,可能被攻破、算法安全监控程序占用的系统资源大、识别异常率不高的问题。云平台VMM层行为监控方法,它包括:用于VMM层劫持系统调用并获得系统调用序列的System Call Interpcepter步骤;用于分析系统调用序列并判断进程异常与否的System Call Analyze步骤;用于接收System Call Analyzer模块的分析结果并发出警报提醒操作系统的System Call Handler步骤。本发明应用于云平台领域。
-
公开(公告)号:CN107196870A
公开(公告)日:2017-09-22
申请号:CN201710599012.4
申请日:2017-07-20
Applicant: 哈尔滨工业大学 , 国家计算机网络与信息安全管理中心
IPC: H04L12/803 , H04L12/801 , H04L12/26
CPC classification number: H04L47/125 , H04L43/0817 , H04L43/16 , H04L47/12
Abstract: 本发明一种基于DPDK的流量动态负载均衡方法涉及计算机多核技术领域;该方法通过建立两张Hash表;分别进行Hash1()以及Hash2()计算,根据Hash结果查找表1以及Hash表2,判断两次Hash计算结果与处理核心id是否存在映射关系,如果是,将数据包分配到对应的处理核心中,否则,计算当前CPU的整体负载均衡度;判断负载均衡度是否超出阈值,如果否,根据Hash1()的结果在Hash表1中建立映射关系,将数据包分配到对应的处理核心中,如果是,剔除过载严重的处理核心;动态更新Hash2()的计算结果与处理核心id的映射关系,根据Hash2()的结果在Hash表2中建立映射关系,并将数据包分配到对应的处理核心中;本发明解决了多核处理器负载不均衡的问题。
-
公开(公告)号:CN119272770B
公开(公告)日:2025-05-16
申请号:CN202411190943.5
申请日:2024-08-28
Applicant: 哈尔滨工业大学
IPC: G06F40/295 , G06F40/16 , G06N3/045 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于注意力机制优化的网络数据命名实体识别方法,属于命名实体识别的预训练模型优化技术领域。解决了现有技术中传统的网络数据命名实体识别方法因未考虑网络安全数据特点导致的识别结果精度较低的问题;本发明给定输入序列,将其输入BERT模型,生成三种嵌入并进行相加,得到词的最终输入,输入到引入BERT模型的Transformer‑XL模型,设置基础矩阵,引入内容嵌入矩阵和位置嵌入矩阵,得到内容嵌入基础矩阵和位置嵌入基础矩阵;获得句子中任意两个单词之间的注意力机制分数,对所有注意力机制分数的加和进行归一化,得到归一化后的注意力机制分数。本发明有效提升了命名实体识别的精度,可以应用于实体识别。
-
公开(公告)号:CN119996065A
公开(公告)日:2025-05-13
申请号:CN202510401906.2
申请日:2025-04-01
Applicant: 哈尔滨工业大学
IPC: H04L9/40 , H04L61/4511 , G06N3/088
Abstract: 本发明公开了一种DNS隧道检测方法,属于安全通信技术领域。解决了现有技术中传统的DNS隧道检测方法难以检测低吞吐DNS隧道和分布式DNS隧道的问题;本发明使用设定的第一聚合键对数据包进行聚合,并使用自编码器进行初步检测与评分,对常规DNS隧道进行检测;使用设定的第二聚合键和第三聚合键分别对一阶聚合的元数据再次进行聚合,分别从通信对象与域名维度对低吞吐DNS隧道和分布式DNS隧道进行检测;将三个自编码器的评分送入一个作为非线性投票机制的自编码器,最后非线性投票机制根据三个聚合键下数据的评分做出最终判断,得到检测结果。本发明有效提升了DNS隧道检测的全面性,可以应用于检测分布式DNS隧道。
-
公开(公告)号:CN119272770A
公开(公告)日:2025-01-07
申请号:CN202411190943.5
申请日:2024-08-28
Applicant: 哈尔滨工业大学
IPC: G06F40/295 , G06F40/16 , G06N3/045 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于注意力机制优化的网络数据命名实体识别方法,属于命名实体识别的预训练模型优化技术领域。解决了现有技术中传统的网络数据命名实体识别方法因未考虑网络安全数据特点导致的识别结果精度较低的问题;本发明给定输入序列,将其输入BERT模型,生成三种嵌入并进行相加,得到词的最终输入,输入到引入BERT模型的Transformer‑XL模型,设置基础矩阵,引入内容嵌入矩阵和位置嵌入矩阵,得到内容嵌入基础矩阵和位置嵌入基础矩阵;获得句子中任意两个单词之间的注意力机制分数,对所有注意力机制分数的加和进行归一化,得到归一化后的注意力机制分数。本发明有效提升了命名实体识别的精度,可以应用于实体识别。
-
公开(公告)号:CN118734846A
公开(公告)日:2024-10-01
申请号:CN202410745744.X
申请日:2024-06-11
Applicant: 哈尔滨工业大学
IPC: G06F40/284 , G06F40/216 , G06F16/33 , G06F16/335 , G06F16/35 , G06Q50/18
Abstract: 本发明提出一种法律文本知识提取方法,属于法律文本知识提取技术领域。包括:对待提取文本进行分词操作,将每个类别中的所有文档聚合成一个长文本,过滤法律停用词,生成每个类别关键词集合;搜索每个类别中与原类别共有关键词最多的相似类别加入关键词集合中;筛选每个类别和其相似类别中的独有关键词和共有关键词加入关键词集合中,以及筛选独有关键词和共有关键词中的偏置词加入关键词集合中。为了解决缺少法律领域的知识提取法方法的问题,本发明分别给出了基于人工干涉的知识提取方案以及无需人工干涉的自动化知识提取方案,对准确性和效率需求不同的场景提供个性化解决方案。
-
-
-
-
-
-
-
-
-