一种基于安全多方计算的支持压缩的隐私信息检索方法及系统

    公开(公告)号:CN117150557A

    公开(公告)日:2023-12-01

    申请号:CN202311143399.4

    申请日:2023-09-06

    Abstract: 本发明一种基于安全多方计算的支持压缩的隐私信息检索方法及系统,涉及信息安全技术领域,为解决现有方法的检索效率低且难以同时兼顾查询方和被查询方的隐私的问题。包括:S1.客户端生成同态加密公私钥pk、sk,服务端根据客户端公布的公钥pk和服务端持有的n条原始数据基于安全计算的隐私信息检索协议进行运算构建HE同态明文数据库;S2.客户端对查询的索引i进行编码生成明文向量X,将查询向量X编码到一个同态明文多项式Q;S3.客户端对多项式Q进行加密得到查询密文q,向服务端发起查询;S4.服务器将查询密文q扩展为一个n维的查询密文向量p;S5.服务器根据扩展向量p得到最终检索结果resp;S6.客户端利用私钥sk解密得到检索结果。

    基于主成分分析多偏置交互的纵向联邦学习优化方法、电子设备及存储介质

    公开(公告)号:CN116306914A

    公开(公告)日:2023-06-23

    申请号:CN202310143694.3

    申请日:2023-02-21

    Abstract: 基于主成分分析多偏置交互的纵向联邦学习优化方法、电子设备及存储介质,属于隐私计算技术领域。为了在数据集容量较小的情况下提高纵向联邦神经网络模型的效率。本发明训练参与各方包括训练发起方、训练协助方,将训练发起方的数据、训练协助方的数据进行前向传播方法训练,得到前向传播方法的训练结果;将前向传播方法的训练结果进行反向传播方法训练,训练协助方和训练发起方分别进行模型参数的更新,完成一轮的训练;重复训练直至训练结果达到精度要求或者停止条件,完成基于多偏置交互的纵向联邦场景神经网络训练。本发明利用了主成分分析数据降维方法,使得特征的过滤功能得到多方数据信息的指导,结果更具说服力。

    发起方权益保护的联邦提升树模型构建方法、系统、设备及存储介质

    公开(公告)号:CN113947212A

    公开(公告)日:2022-01-18

    申请号:CN202111203824.5

    申请日:2021-10-15

    Abstract: 本申请公开了一种发起方权益保护的联邦提升树模型构建方法、系统、设备及存储介质,属于联邦学习技术领域。解决了在联合训练模型时发起方权益保护的问题。本申请发起方与参与方计算分位区间发送给协调方;协调方计算平均的分位数草图发送给发起方和参与方;发起方和参与方计算局部直方图,并对局部直方图添加噪声,发送给协调方;协调方计算全局直方图,发送给发起方与参与方;发起方和参与方计算分裂点的增益,发送给协调方计算根节点;协调方分裂特征与分裂阈值发送给发起方和参与方;发起方和参与方更新局部直方图;发起方选择多个参与方计算下一层节点,重复以上过程进行训练,得到提升树。本申请保护了数据隐私,实现了联邦学习场景。

Patent Agency Ranking