-
公开(公告)号:CN119272770B
公开(公告)日:2025-05-16
申请号:CN202411190943.5
申请日:2024-08-28
Applicant: 哈尔滨工业大学
IPC: G06F40/295 , G06F40/16 , G06N3/045 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于注意力机制优化的网络数据命名实体识别方法,属于命名实体识别的预训练模型优化技术领域。解决了现有技术中传统的网络数据命名实体识别方法因未考虑网络安全数据特点导致的识别结果精度较低的问题;本发明给定输入序列,将其输入BERT模型,生成三种嵌入并进行相加,得到词的最终输入,输入到引入BERT模型的Transformer‑XL模型,设置基础矩阵,引入内容嵌入矩阵和位置嵌入矩阵,得到内容嵌入基础矩阵和位置嵌入基础矩阵;获得句子中任意两个单词之间的注意力机制分数,对所有注意力机制分数的加和进行归一化,得到归一化后的注意力机制分数。本发明有效提升了命名实体识别的精度,可以应用于实体识别。
-
公开(公告)号:CN119272770A
公开(公告)日:2025-01-07
申请号:CN202411190943.5
申请日:2024-08-28
Applicant: 哈尔滨工业大学
IPC: G06F40/295 , G06F40/16 , G06N3/045 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于注意力机制优化的网络数据命名实体识别方法,属于命名实体识别的预训练模型优化技术领域。解决了现有技术中传统的网络数据命名实体识别方法因未考虑网络安全数据特点导致的识别结果精度较低的问题;本发明给定输入序列,将其输入BERT模型,生成三种嵌入并进行相加,得到词的最终输入,输入到引入BERT模型的Transformer‑XL模型,设置基础矩阵,引入内容嵌入矩阵和位置嵌入矩阵,得到内容嵌入基础矩阵和位置嵌入基础矩阵;获得句子中任意两个单词之间的注意力机制分数,对所有注意力机制分数的加和进行归一化,得到归一化后的注意力机制分数。本发明有效提升了命名实体识别的精度,可以应用于实体识别。
-
公开(公告)号:CN119150869A
公开(公告)日:2024-12-17
申请号:CN202411190952.4
申请日:2024-08-28
Applicant: 哈尔滨工业大学
IPC: G06F40/295 , G06F40/16 , G06F16/35 , G06N3/0455 , G06N3/045 , G06N3/09
Abstract: 本发明公开了一种区分网络安全数据命名实体识别难易度的方法,属于网络数据安全技术领域。解决了现有技术中传统的命名实体识别方法难以有效区分数据难易度的问题;本发明包括以下步骤:S1.构建基于规则的判别器,输入数据集,通过难度指标评估句子中实体的复杂性,得到总难度分数,对数据集中的数据进行分类,得到分类结果;S2.构建预训练模型,设置基于预训练模型的数据判别器对分类结果进行验证,得到最终的命名实体识别分类结果。本发明有效提升了识别数据集中具有挑战性的实例的整体准确性,能够区分数据难易度,增强了数据分类结果的鲁棒性,减轻了预训练模型特定的偏差,可以应用于网络安全数据处理。
-
公开(公告)号:CN119150869B
公开(公告)日:2025-04-15
申请号:CN202411190952.4
申请日:2024-08-28
Applicant: 哈尔滨工业大学
IPC: G06F40/295 , G06F40/16 , G06F16/35 , G06N3/0455 , G06N3/045 , G06N3/09
Abstract: 本发明公开了一种区分网络安全数据命名实体识别难易度的方法,属于网络数据安全技术领域。解决了现有技术中传统的命名实体识别方法难以有效区分数据难易度的问题;本发明包括以下步骤:S1.构建基于规则的判别器,输入数据集,通过难度指标评估句子中实体的复杂性,得到总难度分数,对数据集中的数据进行分类,得到分类结果;S2.构建预训练模型,设置基于预训练模型的数据判别器对分类结果进行验证,得到最终的命名实体识别分类结果。本发明有效提升了识别数据集中具有挑战性的实例的整体准确性,能够区分数据难易度,增强了数据分类结果的鲁棒性,减轻了预训练模型特定的偏差,可以应用于网络安全数据处理。
-
-
-