-
公开(公告)号:CN114691936A
公开(公告)日:2022-07-01
申请号:CN202210285973.9
申请日:2022-03-23
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/901 , G06Q10/04
Abstract: 本说明书实施例描述了图网络中的第一节点的第一属性的预测方法和装置。根据实施例的方法,首先基于该第一节点的第一属性的历史值,以及作为该第一节点邻居的第二节点的第一属性的历史值确定第一节点和第二节点的时序表征,然后将该第二节点的时序表征聚合到第一节点的时序表征中,得到能够反映第一节点和第二节点的第一属性之间时序偏移的最终表征。进一步基于该最终表征即可对第一节点的第一属性的未来值进行预测。如此充分考虑了节点之间的关联性和依赖性,从而能够提高对第一节点的第一属性进行预测的准确性。
-
公开(公告)号:CN114372566A
公开(公告)日:2022-04-19
申请号:CN202210277845.X
申请日:2022-03-21
Applicant: 支付宝(杭州)信息技术有限公司 , 北京邮电大学
Abstract: 本说明书实施例公开了图数据的增广、图神经网络训练方法、装置以及设备。增广方案包括:所述图数据包括多个节点以及节点之间的边;确定所述图数据中的指定节点以及所述指定节点的邻居节点;在所述邻居节点中选择部分节点,作为待增广节点;在所述图数据中的所述待增广节点对应的路径上,选择与所述待增广节点的距离小于预设阈值的节点,作为目标节点;将所述待增广节点与所述指定节点之间的边删除,并在所述目标节点与所述指定节点之间生成新的边,以生成增广图数据。
-
公开(公告)号:CN111275189A
公开(公告)日:2020-06-12
申请号:CN202010114977.1
申请日:2020-02-25
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例公开了一种网络表示学习方法、系统及装置。所述网络可以包括多个节点以及节点之间的关联关系,每个节点及每个关联关系分别对应于一个向量表示。所述方法可以包括以下操作:获取一组输入数据,所述输入数据包括网络中相互关联的第一节点以及第二节点的各自的向量表示,以及所述第一节点与所述第二节点之间的关联关系的向量表示;对于所述输入数据,利用基于生成对抗网络的表示学习模型,基于一次迭代,更新对应于所述第一节点、所述第二节点或所述关联关系的向量表示;依此,进行多次迭代直到满足停止迭代条件,获得所述网络中各节点或关联关系的目标向量表示。
-
公开(公告)号:CN114707644B
公开(公告)日:2024-09-06
申请号:CN202210440602.3
申请日:2022-04-25
Applicant: 支付宝(杭州)信息技术有限公司 , 北京邮电大学
IPC: G06N3/042 , G06F18/214 , G06F18/2415 , G06F16/28 , G06N3/08
Abstract: 本说明书实施例提供一种图神经网络的训练方法,涉及基于用户关系图谱对图神经网络进行多轮次迭代更新,其中任一轮次包括:利用当前图神经网络对所述用户关系图谱进行处理,得到与该用户关系图谱中多个用户节点对应的多个分类预测向量;基于所述多个分类预测向量,为所述多个用户节点中第一数量的未标注节点分配对应的伪分类标签;针对所述第一数量的未标注节点中的各个未标注节点,确定利用其训练所述当前图神经网络而产生的信息增益;根据与所述多个用户节点中各个标注节点对应的分类预测向量和真实分类标签,以及与所述各个未标注节点对应的分类预测向量、伪分类标签和信息增益,更新所述当前图神经网络中的模型参数。
-
公开(公告)号:CN117649024A
公开(公告)日:2024-03-05
申请号:CN202311674491.3
申请日:2023-12-06
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06Q10/04 , G06N3/0985
Abstract: 本说明书实施例提供对象链接关系预测模型训练和链接关系预测方法及装置。在进行模型训练时,基于对象关系图构建待训练的第一对象链接关系预测模型的训练样本集;并且经由第二对象链接关系预测模型,基于链接关系预测结果从训练样本集中确定出难分训练样本集。随后,使用难分训练样本集来训练第一对象链接关系预测模型,其中,第二对象链接关系预测模型具有与第一对象链接关系模型相同的模型结构,并且在模型训练过程中模型参数保持不变。
-
公开(公告)号:CN117216575A
公开(公告)日:2023-12-12
申请号:CN202311393266.2
申请日:2023-10-25
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F18/214 , G06N5/02 , G06F16/9535 , G06F16/901
Abstract: 本说明书实施例提供了用于训练推荐模型的方法及装置,在该方法中,按照以下方式进行处理,直至满足预训练结束条件:从源域所包括的源推荐数据中获取用户对应的用户数据以及用户所交互的推荐对象;基于实体图谱得到用户对应的用户特征向量和推荐对象所关联的各个实体对应的实体特征向量;基于各个实体特征向量以及利用原型库中的各个原型对各个实体进行表征得到的原型侧实体特征向量进行对比学习,得到第一损失;根据第一损失以及第二损失得到总损失;以及根据总损失对推荐模型以及匹配原型进行调整,并返回执行从源推荐数据中获取用户数据和推荐对象的操作。
-
公开(公告)号:CN116992045A
公开(公告)日:2023-11-03
申请号:CN202310979500.3
申请日:2023-08-04
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/36 , G06F40/295 , G06N3/045 , G06F40/30 , G06F16/35
Abstract: 本说明书实施例提供知识图谱构建方法及装置。在进行知识图谱构建时,从应用场景服务数据中提取实体节点;确定实体节点之间的实体层级关系;以及根据层级关系确定结果,在实体节点之间创建实体层级边关系。
-
公开(公告)号:CN111581450B
公开(公告)日:2023-07-14
申请号:CN202010588745.X
申请日:2020-06-24
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/901 , G06Q10/04 , G06Q40/03 , G06N3/0464 , G06N20/00
Abstract: 本说明书实施例提供一种确定用户的业务属性的方法,一方面,基于异构图确定用户的预测向量,将各个关联关系下获取的用户的表达向量融合,综合了各种可能的信息,从多维度丰富用户信息,利用信息互补性探索多重关系下的丰富语义,从而避免单一信息缺失无法准确描述用户导致的无法预测用户业务属性的情形;另一方面,在单个关联关系下确定用户的表达向量过程中,不仅考虑用户与其他用户之间的关联影响,而且还考虑连接边对应的业务属性对这种关联关系的影响,充分利用用户的局部结构信息来增强对用户的表示能力,从而提高对用户业务属性预测的准确度。
-
公开(公告)号:CN111309983B
公开(公告)日:2021-09-21
申请号:CN202010162991.9
申请日:2020-03-10
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/901 , G06N3/08
Abstract: 本说明书实施例提供一种基于异构图进行业务处理的方法和装置,可以利用不同结构的关系网络构成的异构图直接进行业务处理。在本说明书的实施架构下,利用多个不同连接关系类型的关系网络,可以更加全面的刻画实体的特征,另一方面,针对各个关系网络分别处理得到节点的各个业务表征向量,无需对各个关系网络进行综合,可以避免繁琐的手工特征抽取,进一步地,可以自动确定在当前业务下,当前实体在每个关系网络中的重要度系数(权重),实现在各个关系网络下的信息融合,从而使得对当前实体的评估结果更加准确。
-
公开(公告)号:CN111538906A
公开(公告)日:2020-08-14
申请号:CN202010477510.3
申请日:2020-05-29
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/9535 , G06F21/62 , G06F40/30 , G06N3/04
Abstract: 本说明书实施例提供一种基于隐私保护的信息推送方法和装置,可以用于在保护用户隐私数据的前提下,基于历史会话中的对象选择序列建立异构图,并根据异构图体现出的推送对象之间的深层关联关系,从多个候选推送对象中确定若干个目标对象进行信息推送。根据一个实施方式,可以获取当前会话中的对象选择序列,并添加目标项构成预测序列,接着,将预测序列中的各项基于异构图确定描述向量,再根据各个描述向量推测目标项的预测向量,之后根据预测向量和各个候选推送对象的描述向量的对比,为目标项确定多个目标对象。该实施方式可以提高信息推送的准确度。
-
-
-
-
-
-
-
-
-