-
公开(公告)号:CN114372566A
公开(公告)日:2022-04-19
申请号:CN202210277845.X
申请日:2022-03-21
Applicant: 支付宝(杭州)信息技术有限公司 , 北京邮电大学
Abstract: 本说明书实施例公开了图数据的增广、图神经网络训练方法、装置以及设备。增广方案包括:所述图数据包括多个节点以及节点之间的边;确定所述图数据中的指定节点以及所述指定节点的邻居节点;在所述邻居节点中选择部分节点,作为待增广节点;在所述图数据中的所述待增广节点对应的路径上,选择与所述待增广节点的距离小于预设阈值的节点,作为目标节点;将所述待增广节点与所述指定节点之间的边删除,并在所述目标节点与所述指定节点之间生成新的边,以生成增广图数据。
-
公开(公告)号:CN114707644B
公开(公告)日:2024-09-06
申请号:CN202210440602.3
申请日:2022-04-25
Applicant: 支付宝(杭州)信息技术有限公司 , 北京邮电大学
IPC: G06N3/042 , G06F18/214 , G06F18/2415 , G06F16/28 , G06N3/08
Abstract: 本说明书实施例提供一种图神经网络的训练方法,涉及基于用户关系图谱对图神经网络进行多轮次迭代更新,其中任一轮次包括:利用当前图神经网络对所述用户关系图谱进行处理,得到与该用户关系图谱中多个用户节点对应的多个分类预测向量;基于所述多个分类预测向量,为所述多个用户节点中第一数量的未标注节点分配对应的伪分类标签;针对所述第一数量的未标注节点中的各个未标注节点,确定利用其训练所述当前图神经网络而产生的信息增益;根据与所述多个用户节点中各个标注节点对应的分类预测向量和真实分类标签,以及与所述各个未标注节点对应的分类预测向量、伪分类标签和信息增益,更新所述当前图神经网络中的模型参数。
-
公开(公告)号:CN114707644A
公开(公告)日:2022-07-05
申请号:CN202210440602.3
申请日:2022-04-25
Applicant: 支付宝(杭州)信息技术有限公司 , 北京邮电大学
Abstract: 本说明书实施例提供一种图神经网络的训练方法,涉及基于用户关系图谱对图神经网络进行多轮次迭代更新,其中任一轮次包括:利用当前图神经网络对所述用户关系图谱进行处理,得到与该用户关系图谱中多个用户节点对应的多个分类预测向量;基于所述多个分类预测向量,为所述多个用户节点中第一数量的未标注节点分配对应的伪分类标签;针对所述第一数量的未标注节点中的各个未标注节点,确定利用其训练所述当前图神经网络而产生的信息增益;根据与所述多个用户节点中各个标注节点对应的分类预测向量和真实分类标签,以及与所述各个未标注节点对应的分类预测向量、伪分类标签和信息增益,更新所述当前图神经网络中的模型参数。
-
公开(公告)号:CN119248970A
公开(公告)日:2025-01-03
申请号:CN202411255331.X
申请日:2021-08-30
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/901 , G06F16/906 , G06F16/9536 , G06Q30/0601 , G06Q40/04 , G06Q50/00 , G06N3/042 , G06N3/0464 , G06N3/045 , G06N3/0442
Abstract: 本说明书实施例提供图节点关系表征生成和图节点业务关系预测方法及装置。在生成图节点关系表征时,分别自第一和第二图节点开始执行节点表征传播和节点表征聚合,确定第二和第一图节点的节点表征;并且基于第一和第二图节点的节点表征,生成第一和第二图节点之间的节点关系表征。在节点表征传播时,将每个源图节点的上一节点传播表征传播给该源图节点的目标图节点集合的每个目标图节点;根据各个目标图节点接收的节点传播表征以及自身上一节点传播表征,生成各个目标图节点的当前节点传播表征。在节点表征聚合处理时,根据聚合图节点的上一节点表征以及邻居图节点的上一节点表征,生成聚合图节点的当前节点表征。
-
公开(公告)号:CN119202393A
公开(公告)日:2024-12-27
申请号:CN202411371727.0
申请日:2024-09-27
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/9535 , G06F18/23213 , G06F18/25 , G06F18/22 , G06F21/62 , G06N3/0455 , G06N3/08 , G06N5/04
Abstract: 本说明书实施例提供了一种基于大模型的推送模型训练方法、信息推送方法及装置。为了使得工业推送系统受益于大模型的知识,可以首先从全量用户中采样种子用户,基于种子用户从大模型中提取高质量、可重用的推送知识,并加入推理池。在对推送模型进行训练时,通过向量检索将推理池中的推送知识扩展到整个用户群,并将检索到的推送知识作为补充信息与第一用户样本的嵌入向量进行融合,得到第一用户样本的融合表征,利用该增强后的融合表征对推送模型进行更新。在推送模型经过这样的训练之后可以将其应用于工业场景中进行信息推送。方法执行过程中会使用到用户的历史行为数据,这些数据属于隐私数据,在数据处理过程中需要进行隐私保护。
-
公开(公告)号:CN118379114A
公开(公告)日:2024-07-23
申请号:CN202410621838.6
申请日:2024-05-17
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06Q30/0601 , G06N3/042 , G06N3/08 , G06N5/022
Abstract: 本说明书实施例提供一种图神经网络的训练及商品推送的技术方案,在进行商品推送过程中引入知识图谱,而为了训练用于处理知识图谱的图神经网络,引入用户意图、商品原型,以及用户意图和商品原型之间的决策路径。如此,基于经由用户意图优化的用户表征、经由商品原型优化的商品表征、决策路径数量、偏好预测的损失共同确定预测损失,如此训练的图神经网络可以携带用户意图和路径决策信息,从而更准确地进行信息推送。
-
公开(公告)号:CN118152590A
公开(公告)日:2024-06-07
申请号:CN202410564986.9
申请日:2024-05-08
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/36 , G06F16/35 , G06F40/284 , G06N5/022
Abstract: 本说明书实施例提供一种基于文本语料生成医疗知识图谱的方法及装置,在基于文本语料构建知识图谱时,可以将知识图谱的数据获取过程分为开放式抽取和对齐两个阶段。具体而言,先由大模型从原始文本语料中开放式抽取实体词及相应的实体类型,还根据所抽取的实体词和实体类型提取相应连接关系。之后,再按照预先定义的实体模式和连接模式进行实体和关系的对齐,并根据对齐结果构建知识图谱。如此,可以提高知识图谱构建的全面性和有效性。
-
公开(公告)号:CN118132680A
公开(公告)日:2024-06-04
申请号:CN202410545207.0
申请日:2024-04-30
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/33 , G06F16/31 , G06F16/36 , G06F40/247 , G06F40/284 , G16H50/70 , G06N5/022
Abstract: 本说明书实施例提供一种基于医疗知识库的查询处理方法和装置,其中,医疗知识库包括知识图谱,知识图谱中的节点包括标准词节点和词条节点,各词条节点具有对应子图作为其词条索引。方法包括:从查询请求中提取若干医学术语;基于若干医学术语,查询知识图谱,获得关联词查询结果和词条查询结果,关联词查询结果至少包括查询到的标准词节点,词条查询结果包括若干备选词条节点;根据关联词查询结果,确定查询请求与若干备选词条节点各自对应的子图的相关性得分;根据相关性得分,确定出目标词条,将对应的词条内容归入查询处理结果。能够提升查询到的词条的准确率。
-
公开(公告)号:CN117235469A
公开(公告)日:2023-12-15
申请号:CN202311125356.3
申请日:2023-09-01
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F18/21 , G06F18/25 , G06F18/214
Abstract: 本说明书公开了一种数据预测方法、装置、存储介质及设备,其中方法包括:首先获取目标事务在第一预设时长内的时序数据,然后将时序数据输入至预训练的位置编码模型中,得到位置编码数据,其中,位置编码数据包括时序数据对应的第一位置编码以及第二位置编码,第二位置编码用于指示目标事务的预测数据的位置指示信息,预测数据为预测第一预设时长后的第二预设时长内目标事务的事务数据,第二预设时长为与第一预设时长相邻的下一预设时长,最后将时序数据和位置编码数据输入至预训练的时序预测模型中进行预测,得到目标事务对应的预测数据。
-
公开(公告)号:CN117151190A
公开(公告)日:2023-12-01
申请号:CN202311196462.0
申请日:2023-09-15
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供图表征增强模型训练方法、图表征方法及装置。在进行模型训练时,通过对原始长尾图中的真头部节点进行邻域剪枝来构建稀疏图。使用图表征增强模型来对稀疏图中的各个节点进行图表征增强以得到各个节点的增强节点表征,各个节点的增强节点表征基于增强稀疏图学习出,增强稀疏图通过为稀疏图中的各个节点增强邻域缺失信息得到,各个节点的邻域缺失信息通过图表征增强模型来基于该节点的中心节点表征和邻居节点表征预测出。然后,根据伪尾部节点的增强节点表征以及原始长尾图中的对应真头部节点的节点表征,确定邻域信息预测损失函数;并基于邻域信息预测损失函数,调整图表征增强模型的模型参数。
-
-
-
-
-
-
-
-
-