基于大语言模型的知识挖掘方法和装置

    公开(公告)号:CN117725113A

    公开(公告)日:2024-03-19

    申请号:CN202311654784.5

    申请日:2023-12-05

    Abstract: 本说明书的实施例提供了一种基于大语言模型的知识挖掘方法和装置。在该基于大语言模型的知识挖掘方法中,根据预定实体图谱,获取针对源实体的结构化知识;根据该源实体在该预定实体图谱中的目标属性确定候选关系集;利用大语言模型根据该结构化知识、该候选关系集和针对该源实体的附加知识,输出对应的目标关系集和可继承知识,其中,该可继承知识包括该目标关系集中的关系所对应的至少一个目标实体词;再利用大语言模型基于该源实体、该目标关系集中的关系和结构化知识、附加知识、可继承知识中的至少一项构建的提示信息,输出与所提供的关系对应的候选实体词集;进而,得到与该源实体相关联的实体和相应关系。

    对象推荐模型训练方法、推荐对象确定方法及装置

    公开(公告)号:CN116304337A

    公开(公告)日:2023-06-23

    申请号:CN202310274863.7

    申请日:2023-03-15

    Abstract: 本说明书实施例提供对象推荐模型训练方法、推荐对象确定方法及装置。在每轮模型训练时,确定用户特征的用户特征嵌入表征、目标对象和用户交互对象的对象特征嵌入表征。从用户交互对象的对象特征嵌入表征中解耦出用户兴趣嵌入表征和用户从众嵌入表征;分别根据目标对象的对象特征嵌入表征以及用户特征嵌入表征与用户兴趣嵌入表征和用户从众嵌入表征之间的耦合结果确定目标对象表征、用户兴趣表征和用户从众表征;根据基于用户兴趣表征、用户从众表征与目标对象表征确定出的用户兴趣预测结果和用户从众预测结果调整对象推荐模型的模型参数。

    用于训练推荐模型的方法及装置
    5.
    发明公开

    公开(公告)号:CN117216575A

    公开(公告)日:2023-12-12

    申请号:CN202311393266.2

    申请日:2023-10-25

    Abstract: 本说明书实施例提供了用于训练推荐模型的方法及装置,在该方法中,按照以下方式进行处理,直至满足预训练结束条件:从源域所包括的源推荐数据中获取用户对应的用户数据以及用户所交互的推荐对象;基于实体图谱得到用户对应的用户特征向量和推荐对象所关联的各个实体对应的实体特征向量;基于各个实体特征向量以及利用原型库中的各个原型对各个实体进行表征得到的原型侧实体特征向量进行对比学习,得到第一损失;根据第一损失以及第二损失得到总损失;以及根据总损失对推荐模型以及匹配原型进行调整,并返回执行从源推荐数据中获取用户数据和推荐对象的操作。

Patent Agency Ranking