-
公开(公告)号:CN114372566A
公开(公告)日:2022-04-19
申请号:CN202210277845.X
申请日:2022-03-21
Applicant: 支付宝(杭州)信息技术有限公司 , 北京邮电大学
Abstract: 本说明书实施例公开了图数据的增广、图神经网络训练方法、装置以及设备。增广方案包括:所述图数据包括多个节点以及节点之间的边;确定所述图数据中的指定节点以及所述指定节点的邻居节点;在所述邻居节点中选择部分节点,作为待增广节点;在所述图数据中的所述待增广节点对应的路径上,选择与所述待增广节点的距离小于预设阈值的节点,作为目标节点;将所述待增广节点与所述指定节点之间的边删除,并在所述目标节点与所述指定节点之间生成新的边,以生成增广图数据。
-
公开(公告)号:CN114707644B
公开(公告)日:2024-09-06
申请号:CN202210440602.3
申请日:2022-04-25
Applicant: 支付宝(杭州)信息技术有限公司 , 北京邮电大学
IPC: G06N3/042 , G06F18/214 , G06F18/2415 , G06F16/28 , G06N3/08
Abstract: 本说明书实施例提供一种图神经网络的训练方法,涉及基于用户关系图谱对图神经网络进行多轮次迭代更新,其中任一轮次包括:利用当前图神经网络对所述用户关系图谱进行处理,得到与该用户关系图谱中多个用户节点对应的多个分类预测向量;基于所述多个分类预测向量,为所述多个用户节点中第一数量的未标注节点分配对应的伪分类标签;针对所述第一数量的未标注节点中的各个未标注节点,确定利用其训练所述当前图神经网络而产生的信息增益;根据与所述多个用户节点中各个标注节点对应的分类预测向量和真实分类标签,以及与所述各个未标注节点对应的分类预测向量、伪分类标签和信息增益,更新所述当前图神经网络中的模型参数。
-
公开(公告)号:CN114707644A
公开(公告)日:2022-07-05
申请号:CN202210440602.3
申请日:2022-04-25
Applicant: 支付宝(杭州)信息技术有限公司 , 北京邮电大学
Abstract: 本说明书实施例提供一种图神经网络的训练方法,涉及基于用户关系图谱对图神经网络进行多轮次迭代更新,其中任一轮次包括:利用当前图神经网络对所述用户关系图谱进行处理,得到与该用户关系图谱中多个用户节点对应的多个分类预测向量;基于所述多个分类预测向量,为所述多个用户节点中第一数量的未标注节点分配对应的伪分类标签;针对所述第一数量的未标注节点中的各个未标注节点,确定利用其训练所述当前图神经网络而产生的信息增益;根据与所述多个用户节点中各个标注节点对应的分类预测向量和真实分类标签,以及与所述各个未标注节点对应的分类预测向量、伪分类标签和信息增益,更新所述当前图神经网络中的模型参数。
-
公开(公告)号:CN119557398A
公开(公告)日:2025-03-04
申请号:CN202411606386.0
申请日:2024-11-11
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F16/3329 , G06F16/36
Abstract: 本说明书提供一种数据处理方法及系统。该方法包括:获取目标问题,并获得事实数据集合;从知识图谱中检索得到与所述目标问题相关的第一知识信息,并基于所述第一知识信息从所述事实数据集合中筛选出关键事实数据;从所述知识图谱中检索得到与所述目标问题、所述关键事实数据均相关的第二知识信息;以及将所述目标问题、所述关键事实数据以及所述第二知识信息提供给大模型,以通过所述大模型生成所述目标问题对应的回答信息。
-
公开(公告)号:CN119294486A
公开(公告)日:2025-01-10
申请号:CN202411297642.2
申请日:2024-09-14
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06N5/022 , G06N5/04 , G06F16/3329 , G06F16/36
Abstract: 本说明书提供了一种基于医疗知识图谱的LLM模型微调方法及相关设备。该方法包括:获取与目标应用场景相关的知识图谱的结构信息;结构信息包含知识图谱中预定义的多个实体类型和多个实体类型之间的关系;基于结构信息生成与目标应用场景相关的推理任务对应的问题模版和回答路径模版;问题模版包含与问题对象对应的第一实体类型;回答路径模版包含:由与问题对象对应的第一实体类型、与问题答案对应的第二实体类型,以及第一实体类型和第二实体类型之间的关系构成的图谱路径;基于问题模版和回答路径模版生成问答样本对,并基于问答样本对,对预训练完成的LLM基础模型进一步执行微调训练,得到用于执行推理任务的LLM服务模型。
-
公开(公告)号:CN114971742B
公开(公告)日:2024-10-22
申请号:CN202210756065.3
申请日:2022-06-29
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06Q30/0203 , G06Q30/0207 , G06Q30/0601
Abstract: 本说明书实施例提供一种用户分类模型的训练、用户分类处理的方法及装置,用户分类模型包括图神经网络、第一分类网络和第二分类网络,该用户分类模型的训练方法包括:获取样本用户,其具有标签数据;在用户关系网络图中,以样本用户为目标节点,利用图神经网络对目标节点进行聚合;将所得的用户表征输入第一分类网络和第二分类网络,得到第一预测值和第二预测值,第一预测值表征样本用户属于由第一类用户和第二类用户构成的第一用户群的概率,第二预测值表征样本用户属于由第二类用户和第三类用户构成的第二用户群的概率;基于第一预测值和/或第二预测值,及标签数据,确定当前损失值;以最小化当前损失值为目标,调整用户分类模型的参数。
-
公开(公告)号:CN115034327B
公开(公告)日:2024-08-13
申请号:CN202210710860.9
申请日:2022-06-22
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F18/241 , G06F18/25 , G06N3/0464 , G06N3/084 , G06Q40/04 , G06Q10/0635
Abstract: 本说明书实施例公开了一种外部数据应用、用户识别的方法、装置和设备,外部数据应用方法可以将目标对象的来自内部数据源的特征输入内部模型得到内部预测结果;将目标对象的来自不同外部数据源的特征分别输入对应的外部模型得到目标对象的至少一个外部预测结果;对所述内部预测结果和所述至少一个外部预测结果进行融合得到所述目标对象的最终预测结果,且融合时将断流外部数据源对应的外部预测结果替换为所述内部预测结果。
-
公开(公告)号:CN118114675B
公开(公告)日:2024-07-26
申请号:CN202410533245.4
申请日:2024-04-29
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06F40/295 , G06F16/35 , G06N3/0455 , G06N5/04 , G06F16/36 , G06N5/022
Abstract: 本申请一个或多个实施例提供一种基于大语言模型的医疗命名实体识别方法和装置,该方法包括:由大语言模型在多个不同的第一类提示文本中的各个第一类提示文本的引导下,基于候选实体类别集合对原始文本进行命名实体识别,得到命名实体识别结果;基于命名实体识别结果,确定原始文本中的各个目标命名实体及其对应的至少一个候选实体类别,并将其转化为与目标命名实体对应的至少一个用于指示与命名实体对应的实体类别的观点;获取与目标命名实体的定义相关的知识文本;由大语言模型从知识文本中抽取与各个观点对应的论据,并进一步基于论据,评估各个观点的正确度;将正确度最高的目标观点指示的候选实体类别确定为与目标命名实体对应的实体类别。
-
公开(公告)号:CN118211729A
公开(公告)日:2024-06-18
申请号:CN202410417783.7
申请日:2024-04-08
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种时间序列预测方法及装置,在进行时序预测过程中,考虑到所利用的历史时序数据可能存在缺失从而导致偏差,可以对粗粒度历史时间序列和细粒度历史时间序列分别进行处理,并基于对预测的细粒度时间序列的统计确定具有可比性的粗粒度时序数值。其中,利用粗粒度历史时间序列可以预测粗粒度时序。而粗粒度时序中,单个时间区间(如对应单个时间节点)可以对应多个细粒度时间段,因此,还可以利用细粒度历史时间序列预测粗粒度时序下的细粒度时序分布,并通过分配比例进行描述。从而,可以按照所确定的分配比例,以及粗粒度预测结果,进行细粒度时间序列的预测。如此,可以提高时序预测结果的准确性。
-
公开(公告)号:CN118195011A
公开(公告)日:2024-06-14
申请号:CN202410524696.1
申请日:2024-04-28
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书一个或多个实施例提供一种基于知识图谱的医疗LLM模型推理方法及装置。该方法包括:对由用户提供的用户数据进行内容识别,并基于内容识别结果从用户数据中提取关键词;识别提取出的关键词中包含的实体以及实体之间的关系,并基于识别出的实体以及所述实体之间的关系生成用于构建与用户对应的个性化的用户知识图谱的个性化的图谱元数据;基于所述个性化的图谱元数据构建与用户对应的个性化的用户知识图谱;响应于获取到的由用户输入的目标文本,将所述目标文本进一步输入至医疗LLM模型,以由医疗LLM模型至少将所述用户知识图谱作为知识库对所述目标文本进行逻辑推理,并输出与目标文本对应的推理结果。
-
-
-
-
-
-
-
-
-