资源分配的方法及装置
    1.
    发明授权

    公开(公告)号:CN115002049B

    公开(公告)日:2023-11-14

    申请号:CN202210674620.8

    申请日:2022-06-15

    Abstract: 本说明书实施例提供一种网络资源分配的方法和装置。根据该方法,获取目标未来时长所对应的网络资源的资源限额信息以及时段信息,所述时段信息包括,目标未来时长包含的多种时段类型按照资源回报率的第一排序。此外还获取分组估计信息,其中包括针对各时段类型,多个用户组中各用户组在得到各备选份额的网络资源情况下的预估资源回报。于是,根据分组估计信息,以最大化目标未来时长中预估资源回报的总和为目标,在多个约束条件下,确定针对各用户组在各时段类型的时段中分配的资源份额,所述多个约束条件包括,分配的总资源份额符合资源限额信息,且针对各时段类型的资源分配符合所述第一排序。

    确定用户的业务属性的方法及装置

    公开(公告)号:CN111581450B

    公开(公告)日:2023-07-14

    申请号:CN202010588745.X

    申请日:2020-06-24

    Abstract: 本说明书实施例提供一种确定用户的业务属性的方法,一方面,基于异构图确定用户的预测向量,将各个关联关系下获取的用户的表达向量融合,综合了各种可能的信息,从多维度丰富用户信息,利用信息互补性探索多重关系下的丰富语义,从而避免单一信息缺失无法准确描述用户导致的无法预测用户业务属性的情形;另一方面,在单个关联关系下确定用户的表达向量过程中,不仅考虑用户与其他用户之间的关联影响,而且还考虑连接边对应的业务属性对这种关联关系的影响,充分利用用户的局部结构信息来增强对用户的表示能力,从而提高对用户业务属性预测的准确度。

    资源分配的方法及装置
    3.
    发明公开

    公开(公告)号:CN115002049A

    公开(公告)日:2022-09-02

    申请号:CN202210674620.8

    申请日:2022-06-15

    Abstract: 本说明书实施例提供一种网络资源分配的方法和装置。根据该方法,获取目标未来时长所对应的网络资源的资源限额信息以及时段信息,所述时段信息包括,目标未来时长包含的多种时段类型按照资源回报率的第一排序。此外还获取分组估计信息,其中包括针对各时段类型,多个用户组中各用户组在得到各备选份额的网络资源情况下的预估资源回报。于是,根据分组估计信息,以最大化目标未来时长中预估资源回报的总和为目标,在多个约束条件下,确定针对各用户组在各时段类型的时段中分配的资源份额,所述多个约束条件包括,分配的总资源份额符合资源限额信息,且针对各时段类型的资源分配符合所述第一排序。

    基于异构图进行业务处理的方法及装置

    公开(公告)号:CN111309983B

    公开(公告)日:2021-09-21

    申请号:CN202010162991.9

    申请日:2020-03-10

    Abstract: 本说明书实施例提供一种基于异构图进行业务处理的方法和装置,可以利用不同结构的关系网络构成的异构图直接进行业务处理。在本说明书的实施架构下,利用多个不同连接关系类型的关系网络,可以更加全面的刻画实体的特征,另一方面,针对各个关系网络分别处理得到节点的各个业务表征向量,无需对各个关系网络进行综合,可以避免繁琐的手工特征抽取,进一步地,可以自动确定在当前业务下,当前实体在每个关系网络中的重要度系数(权重),实现在各个关系网络下的信息融合,从而使得对当前实体的评估结果更加准确。

    基于专家系统的业务处理方法及装置

    公开(公告)号:CN113256274A

    公开(公告)日:2021-08-13

    申请号:CN202110797305.X

    申请日:2021-07-14

    Abstract: 本说明书提供一种基于专家系统的业务处理方法及装置,其中方法包括:获取待处理的目标业务的至少一个业务特征数据;对业务特征数据进行模糊化处理得到对应的模糊化值;基于各个业务特征数据对应的模糊化值、以及预先设置的模糊逻辑进行模糊推理,得到模糊推理结果;所述模糊逻辑中包括第一模糊逻辑和第二模糊逻辑,第一模糊逻辑的结论信息作为第二模糊逻辑的其中一个条件信息;对模糊推理结果进行去模糊化,得到目标业务的业务决策结果;通过专家系统的输出交互界面显示目标业务的业务决策结果。本实施例的方法提高了业务处理效率,也能获得较好的决策准确性。

    半监督语义分割模型训练方法、识别方法和装置

    公开(公告)号:CN111898613B

    公开(公告)日:2020-12-25

    申请号:CN202011054144.7

    申请日:2020-09-30

    Abstract: 本说明书实施例提供了半监督语义分割模型训练方法、识别方法和装置,根据实施例的半监督语义分割模型训练方法,首先通过获取人工对第一图像中的待标注对象进行标注后得到的第一监督数据,进而通过第一监督数据训练得到对待标注对象的识别率相对较高的全监督语义分割模型。利用全监督语义分割模型对未经过人工标注的第二图像中的待标注对象进行标注,得到第二监督数据。再利用经过人工标注得到的第一监督数据和经过全监督语义分割模型标注得到的第二监督数据训练半监督语义分割模型,并利用半监督语义分割模型对第一图像、第二图像和随机扰动项进行识别,得到第三监督数据。最后通过第一、第二和第三监督数据对半监督语义分割模型再次训练。

Patent Agency Ranking