-
公开(公告)号:CN109787088B
公开(公告)日:2021-03-02
申请号:CN201910004608.4
申请日:2019-01-03
Applicant: 北京大学
Abstract: 本发明公开了一种宽波段高效紫外光源及其制备方法。本发明通过控制多个顺次排列的多量子阱的厚度或元素组分,精确调控有源区的结构及发光波段,实现宽波段高效紫外光源;激励源采用电子束泵浦激励方式,该结构无需多结欧姆接触层,与传统LED结构相比结构简单,有效提高空穴注入效率;原子层或亚原子层的超薄势阱有效提高辐射复合几率,进而实现在深紫外波段的高光效输出;同时通过调控量子阱的周期数及势阱厚度,优化多量子阱的总厚度,既能保证电子束不会穿透光源的有源区,又能保证有源区的材料质量;采用III‑V族或II‑VI族半导体材料,实现几乎覆盖UVC、UVB全波段的高效紫外光源。
-
公开(公告)号:CN106350783B
公开(公告)日:2019-01-15
申请号:CN201610799873.2
申请日:2016-08-31
Applicant: 北京大学
IPC: C23C16/44 , C23C16/34 , C23C16/52 , H01L31/0304 , H01L31/18
CPC classification number: Y02P70/521
Abstract: 一种基于MOCVD侧向外延制备低位错密度AlGaN薄膜的方法及AlGaN薄膜。本发明涉及一种基于MOCVD侧向外延制备低位错密度AlGaN薄膜的方法,所述方法包括:制备凹面图形化蓝宝石衬底;在所述衬底上沉积AlN成核层;在所述AlN成核层上,采用MOCVD法外延生长厚度为0.1μm~1μm的AlN层;在所述AlN层上采用MOCVD法外延生长AlGaN层,即得。本发明提供的方法基于图形化衬底实现有效的AlGaN侧向外延过程,充分利用倾斜面的镜像力作用降低AlGaN中的位错密度的同时,利用孔洞效应有效减少AlGaN中的应力,从而实现高质量AlGaN外延薄膜的制备,该方法对解决高Al组分AlGaN中高位错密度的控制难题提供了新的思路。
-
公开(公告)号:CN108155090A
公开(公告)日:2018-06-12
申请号:CN201711349704.X
申请日:2017-12-15
Applicant: 北京大学
IPC: H01L21/205 , H01L33/00 , H01L33/32 , H01L31/18 , H01L31/0304
Abstract: 本发明涉及一种AlN外延薄膜及其制备方法和应用。本发明结合图形化蓝宝石衬底或AlN模板和高温退火两个核心环节,通过侧向外延过程和高温退火有效减少残余应力的途径,获得无裂纹、原子级平整、位错密度很低的AlN外延薄膜,对实现AlGaN基深紫外高性能发光和探测器件及产业应用具有重要意义。
-
公开(公告)号:CN105023984B
公开(公告)日:2018-06-08
申请号:CN201510349047.3
申请日:2015-06-23
Applicant: 北京大学 , 北京燕园中镓半导体工程研发中心有限公司
Abstract: 本发明公开了一种基于GaN厚膜的垂直结构LED芯片及其制备方法。本发明采用了20~100μm厚膜的LED外延片,器件结构的坚固性大为提高;采用了激光划片和平面化介质填充工艺,减少激光剥离的损伤和后续芯片工艺的难度,提高了成品率;同时利用周期性的金属纳米结构,形成的表面等离激元与LED多量子阱的偶极子产生共振,提高内量子效率,同时因为ITO大面积和p型接触层相接触,并不影响电学性质;在电极方面,创新性的使用了接触层技术以及PdInNiAu的金属结构,改善了接触的性能和稳定性。本发明还针对厚膜垂直结构LED芯片的特点,设计了电流扩展层及电极结构,进一步提高电流分布的均匀性。
-
公开(公告)号:CN106350783A
公开(公告)日:2017-01-25
申请号:CN201610799873.2
申请日:2016-08-31
Applicant: 北京大学
IPC: C23C16/44 , C23C16/34 , C23C16/52 , H01L31/0304 , H01L31/18
CPC classification number: Y02P70/521 , C23C16/44 , C23C16/34 , C23C16/52 , H01L31/03048 , H01L31/18
Abstract: 一种基于MOCVD侧向外延制备低位错密度AlGaN薄膜的方法及AlGaN薄膜。本发明涉及一种基于MOCVD侧向外延制备低位错密度AlGaN薄膜的方法,所述方法包括:制备凹面图形化蓝宝石衬底;在所述衬底上沉积AlN成核层;在所述AlN成核层上,采用MOCVD法外延生长厚度为0.1μm~1μm的AlN层;在所述AlN层上采用MOCVD法外延生长AlGaN层,即得。本发明提供的方法基于图形化衬底实现有效的AlGaN侧向外延过程,充分利用倾斜面的镜像力作用降低AlGaN中的位错密度的同时,利用孔洞效应有效减少AlGaN中的应力,从而实现高质量AlGaN外延薄膜的制备,该方法对解决高Al组分AlGaN中高位错密度的控制难题提供了新的思路。
-
公开(公告)号:CN100435360C
公开(公告)日:2008-11-19
申请号:CN200410101833.3
申请日:2004-12-27
Applicant: 北京大学
IPC: H01L33/00
Abstract: 本发明提出了一种基于激光剥离技术和倒封装技术,在外延生长时将具有良好光导出效果的二维散射出光面,在外延生长阶段自然地形成于LED结构之上,而获得具有较高的光功率的发光二极管的制备方法。通过控制这种二维散射出光面的微观尺寸,在n型区表面获得较高载流子浓度,从而形成良好的欧姆接触,对垂直结构的LED的特性的改善具有重要的意义。位于衬底与GaN外延层界面处二维散射出光面,还可以在激光剥离过程中降低GaN和蓝宝石衬底界面处由于激光辐照而产生的应力,减少剥离过程中的损伤,减少剥离前后LED的发光光谱因应力变化而发生移动,以保证剥离衬底而获得高性能的LED。
-
公开(公告)号:CN101140965A
公开(公告)日:2008-03-12
申请号:CN200610113056.3
申请日:2006-09-08
Applicant: 北京大学
IPC: H01L33/00
Abstract: 本发明提供一种无支架的半导体发光二极管,属于光电技术领域。该发光二极管包括LED芯片和封装用透明介质,LED芯片悬置于封装用透明介质内,LED芯片连接导线分别与两LED电极直接连接。本发明的LED芯片全部出光面的光都能导出,可实现360°激发荧光粉获得白光,与目前常规的带有支架的半导体发光二极管相比,具有光功率和热学稳定特性好,寿命长的特点,且制备工艺简单,有利于实现产业化。
-
公开(公告)号:CN100352116C
公开(公告)日:2007-11-28
申请号:CN200510011195.0
申请日:2005-01-18
Applicant: 北京大学
IPC: H01S5/323
Abstract: 本发明提出了一种制备以GaN外延层的自然解理面作为激光器腔镜面、以金属铜Cu作为芯片热沉和支撑衬底的技术,以提高激光器腔镜面的光学质量,减小光学损耗,改善散热效率,达到减小激光器的阈值电流密度,提高器件的综合性能指标的目的,同时可以省略掉磨片、划片、裂片等大量工艺过程,简化工艺、降低成本。本发明是通过在GaN外延片的n面上电镀具有GaN基LD激光器管芯结构的厚铜,镀铜层具有于激光器管芯相同的间隔和周期,接着以铜作为解理激光器芯片时的支撑,并且作为LD芯片最终的热沉。本发明的特点在于同时解决了目前氮化镓基激光器导热、导电性能差和难以制备自然解理面的困难。
-
公开(公告)号:CN1787242A
公开(公告)日:2006-06-14
申请号:CN200410098902.X
申请日:2004-12-10
Applicant: 北京大学
CPC classification number: H01L2224/16
Abstract: 本发明的目的是提供一种倒装LED芯片的封装方法,提高LED外量子效率。利用高热导率的Al、Cu,直接与芯片键合,降低封装热阻,同时降低flip-chip封装的成本。本发明利用厚Cu及Au凸点把倒装焊芯片与Al印刷电路板直接键合,然后粘上反射杯,在芯片上涂抹胶体,最后扣上透镜罩得到倒装芯片的Al印刷电路板封装。把LED flip-chip直接键合到改进的Al基板上,省略了Si基板的制作工艺,同时芯片直接与热沉倒装焊,有效增加了散热效率。厚Cu的优点在于Cu的热导率较高,具有较高的导热速度,同时作为导线,厚Cu线电阻较低,可以降低发热,而Al基板具有较高的散热效率,近一步降低封装热阻。由于Au凸点被垫高,减少热膨胀造成的剪切力,有利于flip-chip与Al基板的键合。
-
公开(公告)号:CN118039455A
公开(公告)日:2024-05-14
申请号:CN202211415099.2
申请日:2022-11-11
Applicant: 北京大学
IPC: H01L21/02
Abstract: 本发明公开一种高晶体质量AlN薄膜及其制备方法和应用。本发明提供的AlN薄膜,其具有如下特征:(1)表面平整度达到0.1nm以下;(2)位错密度小于1.0×108cm‑2。本发明首次提出对AlN/衬底进行特定图形化制备,保障了AlN外延层与模板面内晶格对称性的一致,并在其上进行AlN可控侧向外延,实现特定晶面的可控聚合过程,极大减少晶柱扭曲,大幅减少位错增殖,从而实现位错密度低、表面原子级别平整的AlN薄膜。
-
-
-
-
-
-
-
-
-