-
公开(公告)号:CN107368661B
公开(公告)日:2020-06-05
申请号:CN201710621122.6
申请日:2017-07-27
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G06F119/08
Abstract: 本发明公开了一种高超声速飞行器热气动弹性特性的耦合计算方法,从气动力、气动热、结构传热和结构应力/变形等物理场特征时间出发,在考虑现有计算资源和不降低耦合计算精度的前提下,有效减小了耦合分析方法的计算量,可用于高超声速飞行器实际结构的热气动弹性分析。本发明通过监控结构温度场的变化情况实现了耦合时间步长的动态调整,在有效保证耦合计算精度的情况下,大幅度提升耦合计算效率这一难题。该方法可有效实现高超声速飞行器整机结构或部件的热气动弹性特性分析;同时,对同样涉及飞行器流‑热‑固耦合计算问题也具备求解能力,譬如气动热与传热耦合问题、结构热安全性评估问题等。
-
公开(公告)号:CN109506806A
公开(公告)日:2019-03-22
申请号:CN201811414927.4
申请日:2018-11-26
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种瞬态条件下高温结构内部温度及厚度的同时测量方法,解决了瞬态条件下结构内部温度和厚度无法同时测量的问题。该方法根据介质温度-超声传播特性,将结构厚度和内部温度的同时测量转化为热传导问题热边界条件和结构厚度的多参数识别问题。采用超声回波法,获得瞬态传热条件下超声传播时间,通过求解热传导反问题可快速、无损、非接触地测量相关的结构内部温度和厚度。该方法适用于瞬态传热条件下高温锅炉、管道和模具等高温设备相关结构厚度和内部温度的同时测量。
-
公开(公告)号:CN107871057A
公开(公告)日:2018-04-03
申请号:CN201711145852.X
申请日:2017-11-17
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F19/00
CPC classification number: G06F19/00
Abstract: 本发明公开了一种两级入轨可重复使用飞行器规模估算方法,包括如下步骤:步骤一、计算预设尺寸下飞行器的第二级结构质量;步骤二、计算第二级所需推进剂质量;步骤三、在第二级结构有效容积足够装载第二级推进剂和有效载荷后得到第二级结构尺寸和质量规模参数;步骤四、计算预设尺寸下飞行器的第一级结构质量;步骤五、计算第一级所需推进剂质量;步骤六、在第一级结构有效容积足够装载第一级推进剂后得到第一级结构尺寸和质量规模参数。本发明方法可系统评估两级入轨可重复使用飞行器在符合入轨需求情况下的结构规模,并可用于分析发动机、燃料、轨道等不同因素对整体结构尺寸和质量规模的影响。
-
公开(公告)号:CN107444669A
公开(公告)日:2017-12-08
申请号:CN201710638514.3
申请日:2017-07-31
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: B64F5/00
Abstract: 本发明公开了一种下反式高超声速飞行器气动布局设计方法,包括如下步骤:给定约束条件:长度L,宽度W,底部截面装填内径φ,头部半径Rh,头部球面切角θ,翼前缘半径Rw;步骤一、确定飞行器的上下表面轮廓线;步骤二、确定飞行器的左右宽度轮廓线;步骤三、确定下反截面曲线;步骤四、生成B点之前的椭圆截面;步骤五、生成B点到C点之间的组合截面,得到飞行器外形。本发明方法可以实现不同下反角和尺寸约束条件下外形的快速生成,并且该方法生成的外形可以完全参数化,下反式背风面既保证了升力面积足够大,同时又抑制了迎风面高压气流的向上溢出,减少了升力损失,能够提升气动效率,可以为新型高超声速飞行器设计提供一种新的可选布局方法和方案。
-
公开(公告)号:CN119826998B
公开(公告)日:2025-05-09
申请号:CN202510316124.9
申请日:2025-03-18
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/22
Abstract: 本发明公开了一种基于超声倏逝波幅值测量高温固体结构表面温度的方法,属于无损测量领域,包括步骤:在不同的表面温度条件下,在高温固体结构上方激发超声波,测量不同表面温度下的超声倏逝波幅值大小;对超声倏逝波幅值与温度的关联关系进行确定;在超声倏逝波幅值与温度的关联关系确定以后,在后续的超声探测中,结合超声倏逝波的测量幅值与预先确定的所述超声倏逝波幅值与温度的关联关系式,计算得到高温固体结构表面的温度。本发明不依赖于被测材料表面发出的辐射,能够在高温或极高温环境下稳定测量,实时性好。
-
公开(公告)号:CN116151156A
公开(公告)日:2023-05-23
申请号:CN202310431839.X
申请日:2023-04-21
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/28 , G06F30/23 , G06F30/27 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种适用任意气动参数和模态振型的气动力降阶建模方法,属于数值计算技术领域,包括步骤:S1:构建基模态振型;S2:基于基模态振型,训练适用于任意气动参数的回归径向基网络模型;S3:将训练好的所述回归径向基网络模型与结构力学方程耦合,在任意气动参数下对具有任意模态振型的结构进行气动弹性分析。本发明可以快速、准确地计算任意振型结构在任意气动参数下所受到的气动力载荷,最终服务于飞行模拟、热气动弹性分析、飞行器设计等需要同时任意改变气动参数和结构模态振型的场景。
-
公开(公告)号:CN115356372A
公开(公告)日:2022-11-18
申请号:CN202211300857.6
申请日:2022-10-24
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01N25/20
Abstract: 本发明涉及空天飞行器热防护领域,特别是公开了一种新型材料在飞行试验中的时变热响应测试方法及系统,本发明采用试验面与对照面测温数据相结合的方法进行有限的数据分析,获取试验面复合材料表面和结构内部沿飞行轨道的时变温度数据,本发明的数据能够反映试验面复合材料的整体热响应,特别是能够反映靠近气动加热面的复合材料防热效能;与基于内壁面测量点温度数据的导热反问题分析方法相比,本发明根据对照面外壁面的气动加热热流数据,通过热壁修正公式得到试验面的气动加热热流数据,进而获得的导入试验面的复合材料结构内部的温度剖面,具有较高的处理精度,且受测量点温度偏差的干扰较小,结果可信度高。
-
公开(公告)号:CN113792508B
公开(公告)日:2022-02-11
申请号:CN202111325922.6
申请日:2021-11-10
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/28 , G06F30/23 , G06F30/15 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 本发明公开了一种考虑表面质量引射效应的气动热计算方法,包括步骤:S1,获取高超声速飞行器的几何外型;S2,针对获取的高超声速飞行器的几何外型进行网格划分;S3,获取高超声速来流速度数据、高超声速来流温度数据、高超声速来流密度数据和高超声速来流压力数据,并输入表面质量引射气体质量流率数据和表面质量引射气体温度数据到计算机处理器中;S4,计算表面质量引射气体密度数据、表面质量引射气体速度数据、表面质量引射气体压力数据和表面质量引射气体温度数据;S5,计算高超声速飞行器壁面热流数据,通过所述壁面热流数据表达高超声速飞行器的气动热环境;本发明可以更精准地预测含表面质量引射的高超声速飞行器气动热环境。
-
公开(公告)号:CN113792508A
公开(公告)日:2021-12-14
申请号:CN202111325922.6
申请日:2021-11-10
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/28 , G06F30/23 , G06F30/15 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 本发明公开了一种考虑表面质量引射效应的气动热计算方法,包括步骤:S1,获取高超声速飞行器的几何外型;S2,针对获取的高超声速飞行器的几何外型进行网格划分;S3,获取高超声速来流速度数据、高超声速来流温度数据、高超声速来流密度数据和高超声速来流压力数据,并输入表面质量引射气体质量流率数据和表面质量引射气体温度数据到计算机处理器中;S4,计算表面质量引射气体密度数据、表面质量引射气体速度数据、表面质量引射气体压力数据和表面质量引射气体温度数据;S5,计算高超声速飞行器壁面热流数据,通过所述壁面热流数据表达高超声速飞行器的气动热环境;本发明可以更精准地预测含表面质量引射的高超声速飞行器气动热环境。
-
公开(公告)号:CN112992294B
公开(公告)日:2021-08-10
申请号:CN202110416484.8
申请日:2021-04-19
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G16C60/00
Abstract: 本发明公开了多孔介质LBM计算网格生成方法,包括步骤:S1,获取多孔介质几何数模文件;S2,判断几何空间域的范围;S3,计算LBM物理求解域范围及各方向的网格节点数;S4,计算多孔介质几何数模文件的各固体骨架表面单元在LBM计算空间的区域范围;S5,判断固体骨架表面单元是否存在交点并标记;S6,进行流/固求解域与边界的判断;S7,根据交点排列的奇偶性对流/固区域进行区分;S8对LBM计算空间内的流/固区域与边界进行标识,进而完成LBM计算网格的生成等;本发明使得计算网格的生成能同时兼顾微细结构重建的真实性与网格空间分辨率的可调整性,能够提升LBM求解的灵活性与可靠性等。
-
-
-
-
-
-
-
-
-