-
公开(公告)号:CN116608802A
公开(公告)日:2023-08-18
申请号:CN202310869735.7
申请日:2023-07-17
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01B17/02 , G01K11/24 , G01D21/02 , G06F30/20 , G06F111/10 , G06F119/08
Abstract: 本发明公开了厚度变化时温度和厚度同步测量方法、装置、设备及介质,该方法属于无损探测技术领域,该方法通过给定初始热流、厚度、材料物性参数及判断准则求解热传导方程获得温场分布,再计算得到超声波在介质中的传播时间,通过交替迭代计算更新每个时刻下的热流和厚度,在厚度发生变化的条件下中实现对结构内部温度和厚度的超声同步测量。本发明对结构厚度尺寸的变化进行准确测量,为高温结构的数理建模热安全评估提供了更多的基准数据和评价依据。
-
公开(公告)号:CN114720564A
公开(公告)日:2022-07-08
申请号:CN202210638255.5
申请日:2022-06-08
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01N29/04
Abstract: 本发明公开了基于超声横波的结构表面减薄缺陷起始点定位方法、设备,属于超声无损探测技术领域,包括步骤:在对结构表面的多种形状减薄缺陷进行超声横波探测时,通过检测减薄缺陷起始位置点的反射叠加波幅值,实现减薄缺陷起始点的精确定位。本发明提高对减薄缺陷所在位置的识别精度,从而为结构的安全评估提供最准确的基准数据和评价依据。
-
公开(公告)号:CN119826998A
公开(公告)日:2025-04-15
申请号:CN202510316124.9
申请日:2025-03-18
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/22
Abstract: 本发明公开了一种基于超声倏逝波幅值测量高温固体结构表面温度的方法,属于无损测量领域,包括步骤:在不同的表面温度条件下,在高温固体结构上方激发超声波,测量不同表面温度下的超声倏逝波幅值大小;对超声倏逝波幅值与温度的关联关系进行确定;在超声倏逝波幅值与温度的关联关系确定以后,在后续的超声探测中,结合超声倏逝波的测量幅值与预先确定的所述超声倏逝波幅值与温度的关联关系式,计算得到高温固体结构表面的温度。本发明不依赖于被测材料表面发出的辐射,能够在高温或极高温环境下稳定测量,实时性好。
-
公开(公告)号:CN119442813A
公开(公告)日:2025-02-14
申请号:CN202510038941.2
申请日:2025-01-10
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/23 , G06F119/08 , G06F119/14 , G06F111/04
Abstract: 本发明属于高温热结构优化设计领域,公开了一种考虑热接触的高温结构热力耦合拓扑优化方法。方法包括如下步骤:建立含接触热阻界面的热力耦合有限元分析方法;基于上述步骤中的含接触热阻界面的热力耦合有限元分析方法进行高温结构的热力耦合分析,建立含有多个约束的拓扑优化模型;对拓扑优化模型的目标函数和约束函数进行灵敏度求解,获得灵敏度列式;将灵敏度通过密度过滤法进行过滤;采用移动渐近线优化算法MMA更新拓扑优化模型中的变量。将接触问题扩展到热力耦合结构,有利于对含热接触的高温结构开展精细化设计,同时通过优化结果给出接触热阻对力热耦合结构的调控机制,从而提高含热接触的高温结构设计的精细化程度。
-
公开(公告)号:CN119374754A
公开(公告)日:2025-01-28
申请号:CN202411959132.7
申请日:2024-12-30
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/22
Abstract: 本发明公开了一种基于超声谐波频率测量高温结构内部温度的方法,属于无损探测领域,包括:测量某一温度场下的纵波和横波超声谐振频率,获得纵波和横波超声波传播速度,再依据预先标定的波速与温度关系分别获得纵波和横波测量得到的温度,最后根据纵波和横波的谐振频点数得到综合谐振测温结果。本发明可以在超声波传播时间数据不易采集或采集数据失真的情况下,实现对结构内部温度进行有效的测量,且具有较高的测量精度。
-
公开(公告)号:CN114674257A
公开(公告)日:2022-06-28
申请号:CN202210329164.3
申请日:2022-03-31
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01B17/02
Abstract: 本发明公开了一种基于超声横波探测的高精度测厚方法及装置,属于超声横波测量领域,包括步骤:S1,在结构的未减薄厚度位置和发生厚度减薄变化的位置之间的过渡阶梯端点处正上方激发一次超声横波;S2,记录来自减薄厚度处第一、第二回波时间,来自未减薄厚度处第一、第二回波时间;S3,利用来自未减薄厚度表面与减薄后厚度表面的第一、第二回波之间的渡越声时的作差结果来表征减薄厚度信息;S4,根据超声横波的波速与温度的标定关系,获得不同温度下超声横波在结构中的传播速度,从而利用传播速度获得减薄厚度。本发明摒弃了系统误差,提高定点测厚精度,从而为结构的安全评估提供最准确的基准数据和评价依据,具有十分重要的意义。
-
公开(公告)号:CN119826998B
公开(公告)日:2025-05-09
申请号:CN202510316124.9
申请日:2025-03-18
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/22
Abstract: 本发明公开了一种基于超声倏逝波幅值测量高温固体结构表面温度的方法,属于无损测量领域,包括步骤:在不同的表面温度条件下,在高温固体结构上方激发超声波,测量不同表面温度下的超声倏逝波幅值大小;对超声倏逝波幅值与温度的关联关系进行确定;在超声倏逝波幅值与温度的关联关系确定以后,在后续的超声探测中,结合超声倏逝波的测量幅值与预先确定的所述超声倏逝波幅值与温度的关联关系式,计算得到高温固体结构表面的温度。本发明不依赖于被测材料表面发出的辐射,能够在高温或极高温环境下稳定测量,实时性好。
-
公开(公告)号:CN119063869B
公开(公告)日:2025-01-24
申请号:CN202411572269.7
申请日:2024-11-06
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种金属基复合材料结构内部温度场的超声测量方法,属于超声无损探测领域,包括步骤:在金属基复合材料结构表面激发超声波,检测其回波信号的特征;如果回波信号具有第一回波和第二回波的特征,则首先采用等效均匀化的处理方法将非均质材料均质化,再利用超声测量渡越声时测量所述金属基复合材料的内部温度场;如果回波信号不具有第一回波和第二回波的特征,则结束。本发明克服了传统复合材料因材料组分结构多样带来的复杂问题,测量结果精度较好,适用于多种金属基复合材料的超声测温。
-
公开(公告)号:CN114720564B
公开(公告)日:2022-09-30
申请号:CN202210638255.5
申请日:2022-06-08
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01N29/04
Abstract: 本发明公开了基于超声横波的结构表面减薄缺陷起始点定位方法、设备,属于超声无损探测技术领域,包括步骤:在对结构表面的多种形状减薄缺陷进行超声横波探测时,通过检测减薄缺陷起始位置点的反射叠加波幅值,实现减薄缺陷起始点的精确定位。本发明提高对减薄缺陷所在位置的识别精度,从而为结构的安全评估提供最准确的基准数据和评价依据。
-
公开(公告)号:CN119374754B
公开(公告)日:2025-03-28
申请号:CN202411959132.7
申请日:2024-12-30
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01K11/22
Abstract: 本发明公开了一种基于超声谐波频率测量高温结构内部温度的方法,属于无损探测领域,包括:测量某一温度场下的纵波和横波超声谐振频率,获得纵波和横波超声波传播速度,再依据预先标定的波速与温度关系分别获得纵波和横波测量得到的温度,最后根据纵波和横波的谐振频点数得到综合谐振测温结果。本发明可以在超声波传播时间数据不易采集或采集数据失真的情况下,实现对结构内部温度进行有效的测量,且具有较高的测量精度。
-
-
-
-
-
-
-
-
-