-
公开(公告)号:CN102796998B
公开(公告)日:2013-11-27
申请号:CN201210267363.2
申请日:2012-07-31
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种实现真空容器内纳米光栅沉积基片位置操控的方法及其装置,主要由电磁击打器、位移发生器、标准位移物件收集器、传动机构、基片位移部件构成,利用真空容器外的控制装置使容器内位移发生器输出步进动作的方式实现真空容器内纳米光栅沉积基片位置的移动是一种操控新方法,就该方法而设计的装置可以简单、方便、快捷的实现沉积基片的位置调整,能够避免真空容器内电磁干扰、电子元器件气体释放及爆炸等对纳米光栅沉积基片研究的影响,具有较强的实际应用价值。
-
公开(公告)号:CN102162861A
公开(公告)日:2011-08-24
申请号:CN201010579868.3
申请日:2010-12-07
Applicant: 桂林电子科技大学
IPC: G01V8/10
Abstract: 本发明公开了一种基于太赫兹成像探测水下目标的方法及装置,该装置由连续太赫兹光源、滤波器、准直透镜、会聚透镜、光电探测器、控制器、计算机顺序连接组成,其探测方法是:用一种近红外的激光器去泵浦特定晶体获得的太赫兹连续光源,经准直透镜和滤波器调制成窄带太赫兹平行波以近似垂直的角度射入到水下,经水下目标物反射后通过水面以上的会聚透镜,再会聚到光电探测器和控制器,经计算机处理后即得到水下目标物的二维图像。本发明的优点是:太赫兹辐射在水中传输衰减较小,用太赫兹成像探测水下目标可以减少对水环境的依赖以及提高探测精度,该方法可用于探测识别暗礁、潜艇、鱼群、水雷、失事船只,以及测绘海底地貌等。
-
公开(公告)号:CN119804381A
公开(公告)日:2025-04-11
申请号:CN202510005935.7
申请日:2025-01-02
Applicant: 桂林电子科技大学
IPC: G01N21/3586 , B82Y15/00 , B82Y40/00 , G01N33/68 , G01N33/574 , G01N33/58 , G01N21/3577
Abstract: 本发明涉及太赫兹生物检测技术领域,具体公开了一种结合适配体和太赫兹超材料传感器检测MUC1黏蛋白的方法,包括如下步骤:测试太赫兹超材料传感器的空载光谱;制备金纳米粒子;制备适配体标记的金纳米粒子;双适配体夹心结构的制备;测试太赫兹超材料传感器覆盖测试样品时的光谱;根据光谱的频移量建立关系式并计算MUC1浓度。本发明的太赫兹超材料传感器具有高灵敏度,适配体修饰后的传感器具有高特异性的MUC1黏蛋白识别能力。因此,本发明一种结合适配体和太赫兹超材料传感器检测MUC1黏蛋白的方法,在高灵敏度与高特异性MUC1黏蛋白检测领域具有重要应用价值。
-
公开(公告)号:CN119804380A
公开(公告)日:2025-04-11
申请号:CN202510005898.X
申请日:2025-01-02
Applicant: 桂林电子科技大学
IPC: G01N21/3586 , B32B9/04 , B32B27/28 , B32B3/08
Abstract: 本发明公开了一种基底叠加聚酰亚胺的太赫兹超材料传感器,包括高阻硅基底、叠加在高阻硅基底之上的聚酰亚胺和固定于聚酰亚胺表面的二维阵列,每个阵列单元包括一个圆环金属结构和一个方形开口环金属结构。圆环金属结构的中心与阵列单元的中心重合,包围方形开口环金属结构且无连接;方形开口环金属结构的垂直平分线与圆环金属结构的重合,且处于圆环金属结构的环内,开口位于方形开口环金属结构的上臂,且位于上臂的中心。通过在高阻硅基底之上引入一层聚酰亚胺,使本发明的传感器具有更高的谐振强度、灵敏度和品质因素,而且制作工艺成熟,特别适合作为痕量生物分子的高灵敏度传感。
-
公开(公告)号:CN115663428A
公开(公告)日:2023-01-31
申请号:CN202211388757.3
申请日:2022-11-08
Applicant: 桂林电子科技大学
IPC: H01P1/20
Abstract: 本发明公开一种电控转换的太赫兹单频‑双频‑三频带通滤波器,由高阻硅层、聚酰亚胺层、共地电极和频率控制结构组成。聚酰亚胺层和高阻硅层相叠置,且聚酰亚胺层的下表面与高阻硅层的上表面相贴;频率控制结构叠置于聚酰亚胺层的上表面,共地电极叠置于高阻硅层的下表面。频率控制结构的2个电极贴片分别经由1个开关与直流稳压电源的正极连接,共地电极直接与直流稳压电源的负极连接。与现有技术相比,本发明可实现多频率的滤波,适用于不同场合,结构简单,操作方便。
-
公开(公告)号:CN111555814A
公开(公告)日:2020-08-18
申请号:CN202010537774.3
申请日:2020-06-12
Applicant: 桂林电子科技大学
IPC: H04B10/50 , H04B10/516 , H04B10/90
Abstract: 本发明公开一种光控的太赫兹波3比特编码器及编码方法,包括衬底层、金属层、定位标志和编码结构。金属层和定位标志均覆于衬底层的上表面;编码结构蚀刻在金属层上。编码结构由若干个双圆结构和若干个方形结构组成;所有双圆结构呈周期性排列,所有方形结构呈周期性排列,且所有双圆结构所形成的双圆阵列与所有方形结构所形成的方形阵列相互交错设置。本发明能对太赫兹波进行操控,并能实现3比特即八个状态的编码,与之前的编码结构相比大大提升了编码能力、信息传输能力。能同时控制三个频率点的谐振响应,作用的频段更宽、编码的频率范围更广。本发明具有工艺简单、结构简单且编码速率快的特点。
-
公开(公告)号:CN109217941A
公开(公告)日:2019-01-15
申请号:CN201811425808.9
申请日:2018-11-27
Applicant: 桂林电子科技大学
IPC: H04B10/90 , H04B10/516 , H04B10/50
Abstract: 本发明为一种透射型太赫兹波编码器及2比特编码系统,本编码器包括蓝宝石衬底和其顶面N×M个长方形单元结构成的二维阵列。每个单元结构包括两个纵向中心线重合的子结构,第一子结构为一个“口”形硅结构和一个置于其上的下中心有开口槽的“口”形金属结构,第二子结构为一个“凵”形硅结构和一个置于其上的横竖断开的“凵”形金属结构。本编码系统太赫兹源和接收器之间为本发明太赫兹波编码器,其二维阵列面向太赫兹源。本编码系统采用激光光源和空间光调制器调控编码器二维阵列的照明区域,被激光照明部分的硅结构产生光生载流子,编码器的电磁响应特性改变,独立控制高低频段的透射率,实现对太赫兹波的2比特编码。编码系统操作简单方便。
-
公开(公告)号:CN109188730A
公开(公告)日:2019-01-11
申请号:CN201811178507.0
申请日:2018-10-10
Applicant: 桂林电子科技大学
IPC: G02F1/01
Abstract: 本发明提出一种宽带太赫兹调制系统,包括第一激光发射器、第二激光发射器、太赫兹波发射器和调制器,第一激光发射器发出第一激光束照射到调制器的一面并形成第一光斑;第二激光发射器发出第二激光束照射到调制器的另一面并形成第二光斑;太赫兹波发射器发出太赫兹波入射到调制器的其中一面并形成第三光斑;第三光斑与所述第一光斑或第二光斑至少部分重叠。本发明用两束激光分别照射样片两个表面,光热效应使相变材料二氧化钒由绝缘态向金属态转变,从而实现对太赫兹波透射强度的大深度调制。本发明能在较低的光功率下可实现宽频、大深度和快速调制,该方法制作的太赫兹调制器在未来快速全光控制的太赫兹通信中具有重要的应用价值。
-
公开(公告)号:CN108663157A
公开(公告)日:2018-10-16
申请号:CN201810863077.X
申请日:2018-08-01
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种不仅能够在强电磁干扰及易燃易爆环境下工作,还具有多点准分布测量,成本低廉,性能稳定的Michelson白光干涉光纤液压传感器及其测量系统。该光纤液压传感器的测量系统,包括宽光谱光源、光电探测器、光纤耦合器、第一光纤跳线、第二光纤跳线、扫描位移台、光纤自聚焦透镜、第一平面反射镜、Michelson白光干涉光纤液压传感器、防水导管;所述Michelson白光干涉光纤液压传感器包括弹性隔水膜、硅油、容腔、弹性金属波纹管、滑块、光杆滑轨、固定连接梁、底座密封腔、反射镜固定装置、光纤自聚焦固定装置、导管。采用该光纤液压传感器及其测量系统测量范围及灵敏度可调,成本低廉、性能稳定、易于更换及维修。
-
公开(公告)号:CN106058390A
公开(公告)日:2016-10-26
申请号:CN201610536610.2
申请日:2016-07-08
Applicant: 桂林电子科技大学
IPC: H01P1/20
CPC classification number: H01P1/20
Abstract: 本发明为一种通过静电驱动进行调节的太赫兹带阻滤波器,硅基底的通孔上为二维阵列,上方进入的太赫兹波穿过二维阵列得到滤波,从通孔射出。阵列单元包括倒梯形环结构和一字形结构,倒梯形环长底边在上、短底边在下,中空部位也为梯形,一字形与梯形环短底边相对且平行;可动框架套在二维阵列外,框架左右连接静电梳齿驱动器的活动梳齿,阵列中同一行的倒梯形环结构或一字形结构连接框架内侧,框架前后侧连接梳齿驱动器的活动梳齿。直流电压驱动静电梳齿驱动器和梳齿驱动器工作,带动可动框架移动,倒梯形环结构和一字形结构相对运动,改变间距,调节本带阻滤波器的透射功率和中心频率,显著提高了太赫兹带阻滤波器的性能,并拓展其应用范围。
-
-
-
-
-
-
-
-
-