-
公开(公告)号:CN101509819B
公开(公告)日:2011-06-01
申请号:CN200910071535.7
申请日:2009-03-13
Applicant: 哈尔滨工业大学
IPC: G01M1/32
Abstract: 本发明的目的在于提供一种原理简单、成本低、操作方便的单轴气浮台平衡调整方法。所述的单轴气浮台平衡调整方法,步骤如下:步骤一:将单轴气浮台调整到不水平,用水平仪测量单轴气浮台平面和当地水平线的夹角,记为α;步骤二:使单轴气浮台在重力的作用下来回摆动,记录摆动的幅度和周期;步骤三:根据摆动周期计算出单轴气浮台重心和单轴气浮台回转中心的实际偏心量L;步骤四:在所记录的单轴气浮台两边摆动角的中线上放置相应的配重砝码调整平衡;步骤五:重复上面的步骤,直到偏心量为零或者小到满足工程要求为止。本发明单轴气浮台平衡调整方法,原理简单、方便实用、费用低,并且对单轴气浮台没有电磁干扰。
-
公开(公告)号:CN101487698A
公开(公告)日:2009-07-22
申请号:CN200910071435.4
申请日:2009-02-25
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种针对单轴气浮台微小移动角度的测量方法。在单轴气浮台台面上安装有测量杆系统,测量杆伸出气浮工作台,测量杆伸出端附近安装有微距测量仪,微距测量仪安装在地面上,从微距测量仪上可以读出测量杆的微小转动距离,结合测量杆的长度就可以计算出气浮台转动的微小角度,该角度测量的精度和分辨率与测量杆的长度以及微距测量仪的精度、分辨率有关。本发明单轴气浮台高精度姿态角测量方法,设备简单、精度高,特别适合气浮台微小角位移的高精度测量。本发明也可以进行其他非气浮单轴转台的微小角位移的精确测量。
-
公开(公告)号:CN118270256A
公开(公告)日:2024-07-02
申请号:CN202410685465.9
申请日:2024-05-30
Applicant: 哈尔滨工业大学
IPC: B64G7/00
Abstract: 一种航天器在轨服务六自由度运动模拟系统及其模拟方法,属于飞行器地面模拟技术领域。为解决模拟系统干扰大、精度低、承载重量小的问题,本发明仪表平台和气浮球轴承构成气浮上平台,基座、气足、高压气瓶构成气浮下平台,竖直方向运动单元包括外轴套筒和内杆,内杆下部套装在外轴套筒内,外轴套筒和内杆间形成空隙,空隙通过进气管道与高压气瓶连接,空隙通过出气管道连接外界大气,气管道和出气管道上均设置有气体比例阀,空隙内充入高压气体形成气膜,外轴套筒的外侧安装有气压传感器和位移传感器;仪表平台连接气浮球轴承,气浮球轴承连接竖直方向运动单元的内杆,竖直方向运动单元的外轴套筒安装在基座上。本发明结构简单,精度高,承载大。
-
公开(公告)号:CN114625027B
公开(公告)日:2024-05-24
申请号:CN202210259531.7
申请日:2022-03-16
Applicant: 哈尔滨工业大学
IPC: G05B17/02
Abstract: 本发明提供了一种基于多自由度运动模拟器的多航天器姿轨控地面全物理仿真系统,属于飞行器地面仿真试验领域。本发明多自由度双星伴飞模拟器模拟追踪星和目标星的伴飞运动。台上姿轨控制系统控制追踪星和目标星按指令达到预期的运行状态。动力学仿真机实时模拟两星在轨轨道/姿态动力学。相对导航系统感知两星相对运动状态,并对感知结果进行导航解算。无线数据传输系统实现台上台下系统间的数据交互。视景演示系统通过专业软件模拟运动模拟器的实时工况。本发明采用两台哑铃型气浮台模拟追踪星和目标星的姿态运动,从而实现平面两个自由度和姿态三个自由度的运动模拟,能够达到高精度仿真的目的,为小卫星伴飞控制方案验证提供了可靠的平台。
-
公开(公告)号:CN117826619B
公开(公告)日:2024-05-14
申请号:CN202410247509.X
申请日:2024-03-05
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 地外天体探测软着陆多机基准修正及地面模拟系统与方法,属于飞行器控制技术领域。为实现软着陆阶段的高精度位姿控制,本发明运动平台四周设置有导轨;地外天体探测器模拟装置放置于运动平台上,在运动平台悬浮模拟X、Y方向的平动,以及绕Z方向的转动;软着陆速度模拟装置包括机械抓手以及速度模拟驱动器,机械抓手和速度模拟驱动器固定连接,速度模拟驱动器置于运动平台的导轨上,软着陆速度模拟装置用于固定或释放地外天体探测器模拟系统;视觉图像处理装置包括相机和图像处理计算机,视觉图像处理装置信号连接地面综合管控装置,地面综合管控装置信号连接软着陆速度模拟装置,地面综合管控装置包括工业计算机和无线路由器。本发明准确修正。
-
公开(公告)号:CN117262260B
公开(公告)日:2024-05-14
申请号:CN202311308344.4
申请日:2023-10-11
Applicant: 哈尔滨工业大学
IPC: B64G7/00
Abstract: 基于智能调压技术的三自由度平动微重力模拟装置与方法,属于飞行器控制与地面仿真技术领域,解决微重力模拟系统复杂、测量精度低且不能实现平动问题。本发明的装置结构简单、体积较小,可以实现平动;针对垂向微重力模拟方法,提供了垂向气缸气压检测控制的粗精测双回路控制方法,且方法测量精度高;根据执行器的滞后特性,采用预测控制以及前馈方法来消除时滞部分对系统带来的影响。针对需要快速补偿的垂向扰动力,本装置配置了扇推卸载模块来直接对其进行补偿。本发明适用于三自由度平动微重力模拟,以保证航天器在轨运行的可靠性。
-
公开(公告)号:CN117949124A
公开(公告)日:2024-04-30
申请号:CN202410248070.2
申请日:2024-03-05
Applicant: 哈尔滨工业大学
Abstract: 本发明提出一种基于翻转法的控制力矩陀螺输出力矩测量装置及方法,属于力矩测量技术领域。包括平台、测量模块、数据传输模块和数据分析模块;所述测量模块、所述数据传输模块和数据分析模块依次电连接;所述测量模块安装在所述平台上;所述平台用于承载测量模块;所述数据传输模块用于实现数据交互;所述数据分析模块用于测量CMG输出力矩和分析CMG特性;所述测量模块包括安装台、翻转工装、气浮球轴承和扭矩传感器;所述高精度扭矩传感器安装在所述气浮球轴承上;所述气浮球轴承安装在安装台底部;所述安装台顶部设置有翻转工装;所述翻转工装内放置被测CMG。解决现有技术中存在的输出力矩模型过于复杂,可靠性差、可信度低的技术问题。
-
公开(公告)号:CN117826619A
公开(公告)日:2024-04-05
申请号:CN202410247509.X
申请日:2024-03-05
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 地外天体探测软着陆多机基准修正及地面模拟系统与方法,属于飞行器控制技术领域。为实现软着陆阶段的高精度位姿控制,本发明运动平台四周设置有导轨;地外天体探测器模拟装置放置于运动平台上,在运动平台悬浮模拟X、Y方向的平动,以及绕Z方向的转动;软着陆速度模拟装置包括机械抓手以及速度模拟驱动器,机械抓手和速度模拟驱动器固定连接,速度模拟驱动器置于运动平台的导轨上,软着陆速度模拟装置用于固定或释放地外天体探测器模拟系统;视觉图像处理装置包括相机和图像处理计算机,视觉图像处理装置信号连接地面综合管控装置,地面综合管控装置信号连接软着陆速度模拟装置,地面综合管控装置包括工业计算机和无线路由器。本发明准确修正。
-
公开(公告)号:CN116923724A
公开(公告)日:2023-10-24
申请号:CN202310936215.3
申请日:2023-07-27
Applicant: 哈尔滨工业大学
IPC: B64F5/60 , G06F30/20 , G06F30/15 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明提供了一种飞行器机动可变弹道地面模拟飞行试验技术,属于飞行器地面仿真领域技术领域。本发明包括地面模拟系统和数字孪生系统;地面模拟系统主要包括六自由度平台以及电控子系统;数字孪生系统主要包括建模仿真子系统以及数据管理子系统。本发明以地面模拟飞行试验为基础,充分发挥建模仿真与数字孪生的优势,加强以上两种技术的相互融合。其中,包括飞行器几何建模、流场数值仿真以及飞行仿真在内的建模仿真手段为地面模拟试验提供了基础准备,地面模拟试验为飞行器提供了更接近真实工况的半物理仿真环境。
-
公开(公告)号:CN116796108A
公开(公告)日:2023-09-22
申请号:CN202310761829.2
申请日:2023-06-26
Applicant: 哈尔滨工业大学
IPC: G06F17/11 , G06F30/20 , B64G1/24 , G06F111/04
Abstract: 本发明提供了一种复杂多约束条件下的追踪星轨迹规划方法,属于航天器轨迹规划技术领域。本发明方法包括:建立考虑J2项摄动的相对运动模型;采用轨道偏差演化分析方法构造安全约束和鲁棒性能指标;引入敏感器视场约束、执行机构控制受限约束和对地通信约束,最大程度的贴近实际任务场景;以鲁棒性能和燃料最优作为优化目标,采用非支配排序遗传算法求解最优控制问题。本发明考虑了多种复杂约束条件对任务的影响,并给出了数学表述,使得规划轨迹更加贴近工程实际,最大程度的保证了任务的安全性,同时根据轨迹偏差传播设计了鲁棒性能指标,能够有效提高方法对外在影响的鲁棒性。本发明不再局限于只能针对合作目标的限制,提高了方法的适用性。
-
-
-
-
-
-
-
-
-