一种基于动态阈值的锂离子电池内部微短路检测方法

    公开(公告)号:CN117269815A

    公开(公告)日:2023-12-22

    申请号:CN202311238470.7

    申请日:2023-09-23

    Abstract: 本发明涉及新能源汽车动力电池故障诊断领域,具体公开了基于动态阈值的锂离子电池内部微短路检测方法,包括以下步骤:S1、对锂电池进行充放电测试,并实时记录电池的端电压数据;S2、根据实际应用场景电池数据获取的频率选择时间窗口的大小;S3、建立动态阈值模型;S4、根据动态阈值模型计算对应时间窗口的阈值;S5、根据所选择的时间窗口计算每个循环稳态工况中对应的最大电压斜率;S6、最大电压斜率与动态阈值之间进行比较以判断电池是否发生内部微短路。本发明根据时间窗口计算动态阈值,比较最大电压斜率和动态阈值判断电池是否产生微短路,相比传统方法计算方法更为简单,且阈值容易获取,针对于不同时间维度的数据和微短路现象的检测具有更好的效果。

    一种基于余弦相似度的混联电池组多故障诊断方法

    公开(公告)号:CN113805065B

    公开(公告)日:2023-08-18

    申请号:CN202111102586.9

    申请日:2021-09-20

    Abstract: 一种基于余弦相似度的混联电池组多故障诊断方法,涉及车载动力电池系统故障诊断领域,采用交错电压测量设计安装电压传感器的位置,根据异常测量电压的传感器编号,判断出故障的类型和位置;利用所建立的检测模型,计算编号相邻的传感器测量电压值的余弦相似度。将所有余弦相似度的值作为故障诊断策略的输入,得出故障的类型。至此,可以区分出传感器故障、连接松脱故障和短路故障。最后,根据所提出的隔离模型,对具有相似特征的外部短路和内部短路故障,以及传感器故障中的电压冻结和随机偏差,设置不同的阈值进行隔离。本发明无需其余的计算和模型,就可以实现多种类型故障的诊断,大大简化了电池系统故障诊断的难度。

    用于电池组的温度-OCV-SOC响应面构建方法

    公开(公告)号:CN114859248A

    公开(公告)日:2022-08-05

    申请号:CN202210603673.0

    申请日:2022-05-30

    Abstract: 本发明涉及电动汽车动力电池管理技术领域,具体涉及用于电池组的温度‑OCV‑SOC响应面构建方法,包括:采集动力电池组中各个单体电池的电池特征数据,生成不同环境温度下各个单体电池的OCV‑SOC曲线;基于采集的电池特征数据对动力电池组中各个单体电池的欧姆内阻进行参数辨识;对动力电池组中各个单体电池进行不一致性分析,选择一致性最差的单体电池作为特征单体电池;基于不同环境温度下特征单体电池的OCV‑SOC曲线构建OCV‑SOC曲线簇;对OCV‑SOC曲线簇进行温度的二维插值,生成对应的温度‑OCV‑SOC三维响应面,以实现SOC估计。本发明能够准确的构建动力电池组的温度‑OCV‑SOC三维响应面,以便于基于动力电池组的温度‑OCV‑SOC三维响应面完成SOC估计。

    基于闵氏距离和两步检测策略的电池组多故障诊断方法

    公开(公告)号:CN114814593A

    公开(公告)日:2022-07-29

    申请号:CN202210466822.3

    申请日:2022-04-29

    Abstract: 本发明公开了基于闵氏距离和两步检测策略的电池组多故障诊断方法,包括以下步骤:S1、按照串‑并联交错电压测量设计布置传感器的位置,在不同的故障条件下,采集每个传感器测量的电压数据;S2、建立闵氏距离相似度计算公式;S3、根据闵氏距离相似度计算模型计算闵氏距离相似度,建立故障诊断策略;S4、建立基于阈值的能够区分出具有相似特征故障的隔离模型。本发明的有益效果在于:根据串‑并联电池组交错电压测量设计,可以有效地识别并定位出连接松脱故障、传感器故障和短路故障,无需复杂的电池模型,对数据依赖度低,计算量小。

    一种锂离子电池组电化学模型参数获取方法

    公开(公告)号:CN112083336B

    公开(公告)日:2022-02-01

    申请号:CN202011117166.3

    申请日:2020-10-19

    Abstract: 本发明提供了一种锂离子电池组电化学模型参数获取方法,其基于激励响应分析对不同个体电池在辨识工况下放电末端的电压曲线进行对比分析,估算出辨识工况下各单体电池所对应的放电容量,提取辨识工况中的搁置末端的端电压,从而辨识出不同单体电池的电化学模型基本工作过程相关参数,进而实施其他参数的获取,实现了电化学模型在电池组上的应用,同时为简化电化学模型在电池管理系统中的应用如荷电状态估计、健康状态评估等提供了技术支持。

    基于简化电化学模型和灰色预测联合的电池容量预测方法

    公开(公告)号:CN113933714A

    公开(公告)日:2022-01-14

    申请号:CN202111204509.4

    申请日:2021-10-15

    Abstract: 基于简化电化学模型和灰色预测联合的电池容量预测方法,属于电池性能衰减预测领域,为了解决对锂离子电池性能衰减预测精度低的问题。获取锂离子电池在充放电情况下的电流数据和电化学模型参数,所述电化学模型参数包括多个电化学参数;将每个电化学参数在设定的变化范围内取多个均分值,分别代入对应的电化学模型中进行电池放电仿真,获得每个电化学参数的敏感度;从多个电化学参数的敏感度中选出高于预设敏感值的电化学参数作为关键敏感参数;利用灰色预测模型预测关键敏感参数的退化,得到关键敏感参数的预测值;将关键敏感参数的预测值代入电化学模型中模拟恒流放电至截止电压处,预测出锂离子电池的放电容量。它用于预测电池容量。

Patent Agency Ranking