-
公开(公告)号:CN114624603B
公开(公告)日:2024-11-22
申请号:CN202210254508.9
申请日:2022-03-15
Applicant: 哈尔滨工业大学(威海) , 北京空间飞行器总体设计部
IPC: G01R31/367 , G01R31/388 , G01R31/396
Abstract: 本发明公开了一种基于机器学习的电池系统支路电流估计方法,包括以下步骤:包括进行DST,FUDS,UDDS,HPPC四个工况下的离线测试,将整合的数据集进行归一化,设置BP神经网络的参数,对BP神经网络进行训练,得到训练好的BP神经网络,得到支路电流估计值。对比现有技术,本发明的有益效果在于:使用BP神经网络进行支路电流估计,BP神经网络算法比深度学习算法结构简单、训练学习快,占用内存小,更适合移动载运装备。
-
公开(公告)号:CN112485673B
公开(公告)日:2022-04-08
申请号:CN202011303051.3
申请日:2020-11-19
Applicant: 哈尔滨工业大学(威海) , 北京空间飞行器总体设计部
IPC: G01R31/367 , G01R31/387
Abstract: 本发明公开了一种基于动态多安全约束的电池充放电峰值功率预测方法,该方法采用等效电路模型、热模型和负极析锂模型三种模型,首先基于等效电路模型和热模型获得SOC、端电压、温度约束下的充放电峰值电流,然后基于负极析锂模型获得析锂约束下的充电峰值电流,综合考虑各安全约束推导出电池持续充放电峰值电流,进而实现动态多安全约束下的电池持续充放电峰值功率预测,对于电池的安全性和耐久性具有重要意义。
-
公开(公告)号:CN112485673A
公开(公告)日:2021-03-12
申请号:CN202011303051.3
申请日:2020-11-19
Applicant: 哈尔滨工业大学(威海) , 北京空间飞行器总体设计部
IPC: G01R31/367 , G01R31/387
Abstract: 本发明公开了一种基于动态多安全约束的电池充放电峰值功率预测方法,该方法采用等效电路模型、热模型和负极析锂模型三种模型,首先基于等效电路模型和热模型获得SOC、端电压、温度约束下的充放电峰值电流,然后基于负极析锂模型获得析锂约束下的充电峰值电流,综合考虑各安全约束推导出电池持续充放电峰值电流,进而实现动态多安全约束下的电池持续充放电峰值功率预测,对于电池的安全性和耐久性具有重要意义。
-
公开(公告)号:CN112285570A
公开(公告)日:2021-01-29
申请号:CN202011185803.0
申请日:2020-10-29
Applicant: 哈尔滨工业大学(威海) , 北京空间飞行器总体设计部
IPC: G01R31/367 , G01R31/385
Abstract: 本发明提供一种基于衰减记忆滤波器的电动汽车故障诊断方法,该方法用于电动汽车中电池系统故障诊断,首先对所选电池开展基础特性测试实验,实际电池系统故障诊断过程需要实时采集电池的电流和端电压信号,建立一阶RC等效电路模型和状态空间方程,然后使用衰减记忆滤波器对电池进行参数辨识,到模型参数ζ和OCV估计值。通过参数ζ的估计值与参考值得到残差r1,通过OCV的估计值与参考值得到残差r2,将两个残差分别与对应阈值进行对比,只有当两残差均超过对应阈值才可判断故障发生,所提方法在残差生成和残差评价过程均优于现有技术。
-
公开(公告)号:CN114624602A
公开(公告)日:2022-06-14
申请号:CN202210253218.2
申请日:2022-03-15
Applicant: 哈尔滨工业大学(威海) , 北京空间飞行器总体设计部
IPC: G01R31/367 , G01R31/396
Abstract: 本发明公开了一种储能电池系统并联支路电流估计值矫正方法,获取干路电路和支路电流估计值,对支路电流估计值进行矫正。对比现有技术,本发明的有益效果在于:通过记录干路电流不同变化情况以及对应的绝对误差的值,确定误差变量和干路电流之间的比例系数,将支路电流估计值减去误差变量得到矫正后的支路电流,所用的矫正方法新颖,矫正流程简单直观。
-
公开(公告)号:CN112285570B
公开(公告)日:2022-05-20
申请号:CN202011185803.0
申请日:2020-10-29
Applicant: 哈尔滨工业大学(威海) , 北京空间飞行器总体设计部
IPC: G01R31/367 , G01R31/385
Abstract: 本发明提供一种基于衰减记忆滤波器的电动汽车故障诊断方法,该方法用于电动汽车中电池系统故障诊断,首先对所选电池开展基础特性测试实验,实际电池系统故障诊断过程需要实时采集电池的电流和端电压信号,建立一阶RC等效电路模型和状态空间方程,然后使用衰减记忆滤波器对电池进行参数辨识,到模型参数ζ和OCV估计值。通过参数ζ的估计值与参考值得到残差r1,通过OCV的估计值与参考值得到残差r2,将两个残差分别与对应阈值进行对比,只有当两残差均超过对应阈值才可判断故障发生,所提方法在残差生成和残差评价过程均优于现有技术。
-
公开(公告)号:CN114624602B
公开(公告)日:2025-05-13
申请号:CN202210253218.2
申请日:2022-03-15
Applicant: 哈尔滨工业大学(威海) , 北京空间飞行器总体设计部
IPC: G01R31/367 , G01R31/396
Abstract: 本发明公开了一种储能电池系统并联支路电流估计值矫正方法,获取干路电路和支路电流估计值,对支路电流估计值进行矫正。对比现有技术,本发明的有益效果在于:通过记录干路电流不同变化情况以及对应的绝对误差的值,确定误差变量和干路电流之间的比例系数,将支路电流估计值减去误差变量得到矫正后的支路电流,所用的矫正方法新颖,矫正流程简单直观。
-
公开(公告)号:CN112285569A
公开(公告)日:2021-01-29
申请号:CN202011181863.5
申请日:2020-10-29
Applicant: 哈尔滨工业大学(威海) , 北京空间飞行器总体设计部
IPC: G01R31/367 , G01R31/392
Abstract: 本发明提供一种基于动态阈值模型的电动汽车故障诊断方法,该方法用于电动汽车中电池系统故障诊断,在阈值模型建立和参数辨识算法两方面进行了改进,在不同温度下进行电路基础特性测试实验,得到等效电路模型参数;建立OCV‑SOC‑Q三维响应面模型;采用带遗忘因子的递推最小二乘法进行模型参数辨识,建立关于R0和τ的动态阈值模型。在实际故障诊断过程当中,利用双扩展卡尔曼滤波算法辨识参数和状态,得到电池R0和τ、容量及SOC;采用温度插值的方法确定参数参考值;确定参数阈值;生成残差;通过对比残差与阈值来判断电池是否发生故障。该方法不仅故障诊断率高,还能避免检测不及时、误警和漏警问题。
-
公开(公告)号:CN114624603A
公开(公告)日:2022-06-14
申请号:CN202210254508.9
申请日:2022-03-15
Applicant: 哈尔滨工业大学(威海) , 北京空间飞行器总体设计部
IPC: G01R31/367 , G01R31/388 , G01R31/396
Abstract: 本发明公开了一种基于机器学习的电池系统支路电流估计方法,包括以下步骤:包括进行DST,FUDS,UDDS,HPPC四个工况下的离线测试,将整合的数据集进行归一化,设置BP神经网络的参数,对BP神经网络进行训练,得到训练好的BP神经网络,得到支路电流估计值。对比现有技术,本发明的有益效果在于:使用BP神经网络进行支路电流估计,BP神经网络算法比深度学习算法结构简单、训练学习快,占用内存小,更适合移动载运装备。
-
公开(公告)号:CN112285569B
公开(公告)日:2022-02-01
申请号:CN202011181863.5
申请日:2020-10-29
Applicant: 哈尔滨工业大学(威海) , 北京空间飞行器总体设计部
IPC: G01R31/367 , G01R31/392
Abstract: 本发明提供一种基于动态阈值模型的电动汽车故障诊断方法,该方法用于电动汽车中电池系统故障诊断,在阈值模型建立和参数辨识算法两方面进行了改进,在不同温度下进行电路基础特性测试实验,得到等效电路模型参数;建立OCV‑SOC‑Q三维响应面模型;采用带遗忘因子的递推最小二乘法进行模型参数辨识,建立关于R0和τ的动态阈值模型。在实际故障诊断过程当中,利用双扩展卡尔曼滤波算法辨识参数和状态,得到电池R0和τ、容量及SOC;采用温度插值的方法确定参数参考值;确定参数阈值;生成残差;通过对比残差与阈值来判断电池是否发生故障。该方法不仅故障诊断率高,还能避免检测不及时、误警和漏警问题。
-
-
-
-
-
-
-
-
-