-
公开(公告)号:CN119737863A
公开(公告)日:2025-04-01
申请号:CN202411742814.2
申请日:2024-11-29
Applicant: 北京航天计量测试技术研究所
IPC: G01B11/02
Abstract: 本发明涉及高精度相对位移测量技术领域,具体涉及一种偏振光共路差分相对位移测量系统和方法,能够提高微小相对位移测量的精度,有效增强系统的抗干扰能力,适用于更广泛的高精度测量场合。通过利用偏振光共路差分测量技术,进一步提高了传统激光准直测量方法的精度和可靠性,为相关领域的高精度测量提供了一种创新性技术手段。不但可以保证亚微米级别的相对位移测量精度,而且还具备优异的抗环境干扰的能力,从而保证地面验证实验的可靠性。通过将激光准直技术与偏振光共路差分测量技术相结合,实现了对微小相对位移的高精度测量。相较于传统的测量方法,本发明具有更高的测量精度和更强的抗干扰能力。
-
公开(公告)号:CN115717868B
公开(公告)日:2023-11-07
申请号:CN202211221112.0
申请日:2022-10-08
Applicant: 北京航天计量测试技术研究所
Abstract: 本发明涉及三维测量系统领域技术领域,特别涉及一种非接触式三维扫描测量系统。一种实时在线的三维自动化扫描测量系统,包括:AGV小车、协作机器人、高精度光学扫描测头、固定式光学跟踪器、基于5G技术的数据无线传输单元、数据处理单元以及自动化控制单元。本发明利用高精度光学扫描测头采集被测工件的图像信息,通过5G技术实时、快速传送给数据处理单元,数据处理单元完成点云数据解算、点云去噪、点云网格化及形位公差分析等数据处理,得到的测量结果上传至云服务器,实现测量结果云共享。有效解决了现有在线测量系统在对工件进行实时在线测量时安全性差、编程复杂、适应性差、测量数据因无法实时共享而造成检测效率低的问题。
-
公开(公告)号:CN116164662A
公开(公告)日:2023-05-26
申请号:CN202211431558.6
申请日:2022-11-15
Applicant: 北京航天计量测试技术研究所
Abstract: 本发明提出一种回转类零件的三维自动化扫描测量系统,解决了现有测量设备行程对测量影响的问题。包括:零件旋转变位机构、水平移动机构、六自由度机器人、高精度三维激光扫描测量仪、被测零件;所述零件旋转变位机构包括动力座、尾座、辅助支撑座及底座;所述动力座、尾座及辅助支撑座与底座连接,所述底座与地面通过螺栓固定;所述水平移动机构包括支架、双直线导轨滑块结构、齿条、齿轮、电机、减速器与移动平台;所述双直线导轨滑块结构水平固定在所述支架上,所述移动平台上设置有机器人安装支架,所述机器人安装支架上安装六自由度机器人,所述六自由度机器人末端安装连接法兰,所述连接法兰安装高精度三维激光扫描测量仪。
-
公开(公告)号:CN115711719A
公开(公告)日:2023-02-24
申请号:CN202211308159.0
申请日:2022-10-25
Applicant: 北京航天计量测试技术研究所
IPC: G01M9/06
Abstract: 本发明提出一种风洞试验应变测量中抖动量分离方法,能够剔除风洞试验应变测量中因抖动量引起的测量误差,从而准确测量在风洞试验中被测对象的表面应变。在采用该抖动量分离方法时,在支杆上设置N个测量靶标;风洞试验开始后,双相机测量系统进行图像采集,得到m组带抖动量的图像序列对;以双相机测量系统中任意一个相机的坐标系为相机测量坐标系,解算每组图像序列对中各测量点、各测量靶标在相机测量坐标系下的空间坐标;然后对解算的每组图像序列对中各测量点在相机测量坐标系下的空间坐标进行坐标变换便可得到去抖动量后的测量点坐标。
-
公开(公告)号:CN112634373A
公开(公告)日:2021-04-09
申请号:CN202011382690.3
申请日:2020-12-01
Applicant: 北京航天计量测试技术研究所
Abstract: 本发明提出一种基于零膨胀陶瓷标定板的视觉测量系统校正方法,能够克服测试过程中高低温变化及传输路径气流密度变化对测量准确度的影响。在视觉测量系统的被测视场空间内放置零膨胀陶瓷标定板,零膨胀陶瓷标定板上设置有靶点;测量时,视觉测量系统中的各相机进行实时图像采集,提取得到零膨胀陶瓷标定板上各靶点的图像坐标,并计算重投影误差e,当e大于预设阈值s时,进行参数校正;参数校正过程为:首先建立零膨胀陶瓷标定板上各靶点的真实值与预测值之间的关系,进而得到畸变校正模型;然后将视觉测量系统静态参数标定条件下直接计算出的测点空间相对坐标输入到畸变校正模型中进行计算,其输出值即为畸变校正后的测点空间三维坐标。
-
公开(公告)号:CN107883889B
公开(公告)日:2020-10-23
申请号:CN201711039665.3
申请日:2017-10-31
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
Abstract: 一种基于激光散斑干涉的振动试验三维变形测量装置,其特征在于:包括高速相机1、激光器2、斩波器7,激光器2发出的光经分光镜A3分出光束A,后又经分光镜B4分出光束B,后又经分光镜C5分成光束C和光束D。斩波器7通过电机带动圆形叶片绕中心轴旋转,5个出光口一组,每组间隔90°,且∠A=∠B=∠C=15°其中光束A为x向和z向的共用光束,经X1出光口出射;光束B为z向测量光束,经Z出光口出射;光束C为y向测量光束,经Y出光口出射;光束D为x向测量光束,经X2出光口出射。
-
公开(公告)号:CN107515012B
公开(公告)日:2020-10-23
申请号:CN201710599042.5
申请日:2017-07-21
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01C25/00
Abstract: 一种基于单轴旋转机构的动态视觉测量系统校准装置,包括单轴旋转机构,标志点粘贴在单轴旋转机构的旋转平面上,旋转机构控制柜通过电缆与单轴旋转机构连接,视觉测量系统安装在三脚架上,且视觉测量系统与单轴旋转机构通过同步触发线连接。视觉测量系统包括左右两台相机,左右两台相机的公共视场能覆盖单轴旋转机构的旋转平面。
-
公开(公告)号:CN108132058A
公开(公告)日:2018-06-08
申请号:CN201611089001.3
申请日:2016-11-30
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01C25/00
Abstract: 本发明属于摄影测量校准技术领域,具体涉及一种摄影测量系统动态位移测量误差校准装置及方法。直线电机带动滑台沿导轨方向进行直线运动,直线导轨侧面安装有光栅和光栅读数头,光栅配合光栅读数头测量滑台的运动位移,同时光栅的刻线脉冲信号作为同步触发信号,经过处理电路进行电压转换后,触发待校准摄影测量系统采集图像,当滑台经过拍摄区域时,待校准摄影测量系统可以拍摄得到安装在滑台上的光学靶标的运动图像,经过数据处理计算机解算后得到光学靶标的运动位移,进而通过与光栅的测量数据比对得到待校准摄影测量系统的动态位移测量误差,完成系统校准。本发明可以解决工业摄影测量系统动态位移测量误差的校准问题。
-
公开(公告)号:CN104345518B
公开(公告)日:2017-05-17
申请号:CN201310316222.X
申请日:2013-07-25
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
Abstract: 本发明涉及摄影测量技术领域,具体公开了一种基于摩擦轮传动的相机入射光强调节机构。该调节机构中,安装在相机前端的镜头通过相机固定支架固定在底座上,固定偏振片与镜头紧固连接,位于大摩擦轮中空轴内的转动偏振片,通过转动机构支架固定在固定偏振片轴线的前端;电机通过电机固定支架固定在底座上,并保证与电机相连接的小摩擦轮与大摩擦轮同轴,且小摩擦轮可通过与大摩擦轮的摩擦力,带动安装在大摩擦轮中的转动偏振片转动。该调节机构中整个光强调节机构为平行轴结构,解决了驱动机构对相机视场的遮挡问题;摩擦轮的传动机构实现了无间隙无回程;转动机构采用双排滚珠的形式,可以自定位,转动流畅无径向窜动。
-
公开(公告)号:CN106403810A
公开(公告)日:2017-02-15
申请号:CN201510463473.X
申请日:2015-07-31
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01B11/00
Abstract: 本发明几何量计量技术领域,具体涉及一种激光跟踪数字化柔性装配测量系统现场校准方法。具体包括以下步骤:步骤一、仪器安装;步骤二、建立测量坐标系;步骤三、构建并测量标准装置坐标系;步骤四、解算标准装置坐标系与测量坐标系间的位置姿态关系;步骤五、通过激光跟踪数字化柔性装配测量系统得到位移和角度变化量的测量值;步骤六、比较测量值和标准装置提供的参考值,得到系统位移和角度测量误差;步骤七、分析系统位置姿态测量不确定度。本发明设计的方法能够有效解决激光跟踪数字化柔性装配测量系统的现场校准问题,能够实现测量系统对位置和姿态测量经过的校准,此方法涉及的标准装置便携性好,能够适应装配现场实施。
-
-
-
-
-
-
-
-
-